

TE 364: Communication Circuits Lecture 8 Filter Circuits 2

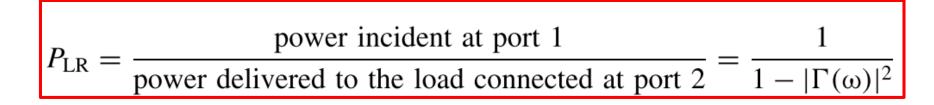
2015.02.15

Abdul-Rahman Ahmed

Insertion-Loss Method

Provides ways to shape pass- and stop-bands of the filter,
 *although its design theory is much more complex

Power Loss Ratio, P_{LR}



Expressed in decibel, it is called the *insertion loss*

Insertion-Loss Method

$$\Gamma(\omega^2) = \frac{f_1(\omega^2)}{f_1(\omega^2) + f_2(\omega^2)}$$

$$P_{LR} = 1 + \frac{f_1(\omega^2)}{f_2(\omega^2)}$$

 $f_1(\omega^2)$ and $f_2(\omega^2)$ are real polynomials of ω^2

Insertion-loss Method

□Magnitude of the voltage gain of the 2-port is

$$\left|G(\omega)\right| = \frac{1}{\sqrt{P_{LR}}} = \frac{1}{\sqrt{1 + f_1(\omega^2)/f_2(\omega^2)}}$$

Design Procedure

Begin with lumped-element low-pass prototype

>Synthesized from normalized tables

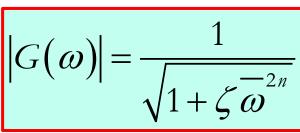
*Low-pass then transformed to required cut-off and impedance.

Prototype transformed to high-pass, band-pass etc.

Lumped elements then transformed to t-lines

Maximally Flat Filter

- Flattest possible pass-band respond
- Also known as
 - Butterworth filter
 - *Binomial filter

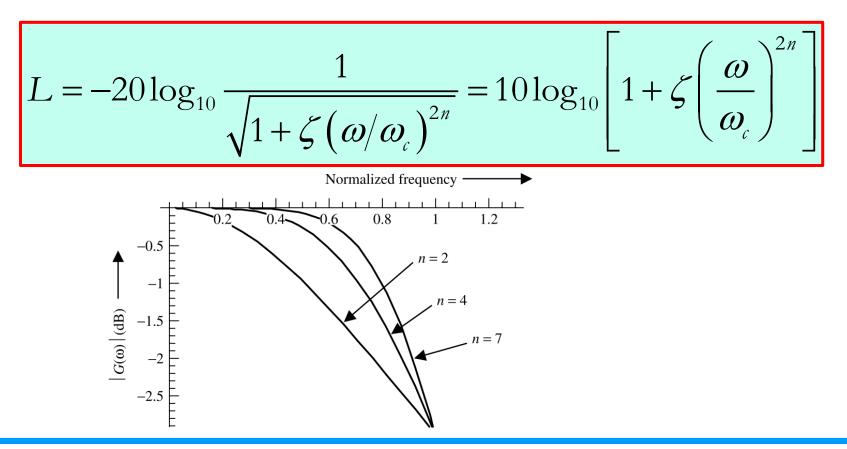


n is the order of the filter

- ζ controls the power-loss ratio at its band edge
- ω is the normalized frequency

Maximally Flat Filter

Insertion loss is given by



Maximally Flat Filter

At the band edge, and $\zeta = 10^{L_c/10} - 1$

The order *n* can be obtained from

$$n = \frac{1}{2} \times \frac{\log_{10}(10^{L/10} - 1) - \log_{10}\zeta}{\log_{10}(\omega/\omega_c)}$$

□For Chebyshev Filters,

Flat pass-band is sacrificed for sharper cut-off

Therefore

Possess ripples in the pass-band
Have sharp transition into the stop-band
Chebyshev polynomials are used
To represent the insertion loss

□ Mathematically,

$$\left|G(\omega)\right| = \frac{1}{\sqrt{1 + \zeta T_m^2(\overline{\omega})}}$$

$$m = 1, 2, 3, \ldots$$

 T_m is a Chebyshev polynomial

- $\zeta\,$ is a constant that controls the power-loss ratio at its band edge
- $\overline{\omega}$ is the normalized frequency

The insertion loss is given by

$$L = -20 \log_{10} \frac{1}{\sqrt{1 + \zeta T_m^2 (\omega / \omega_c)}}$$
$$= 10 \log_{10} \left[1 + \zeta T_m^2 \left(\frac{\omega}{\omega_c} \right) \right]$$

$$L = \begin{cases} 10 \log_{10} \left[1 + \zeta \cos^2 \left(m \cos^{-1} \frac{\omega}{\omega_c} \right) \right] & 0 \le \omega \le \omega_c \\ 10 \log_{10} \left[1 + \zeta \cosh^2 \left(m \cosh^{-1} \frac{\omega}{\omega_c} \right) \right] & \omega_c < \omega \end{cases}$$

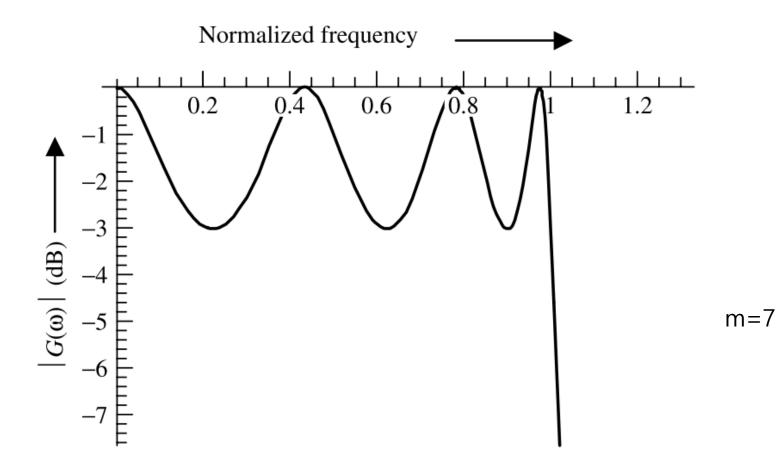
$$\zeta = 10^{0.1 \times G_r} - 1$$

 $\Box G_r$ is the ripple amplitude in decibel

$$m = \frac{\cosh^{-1} \sqrt{(10^{0.1 \times L} - 1)/(10^{0.1 \times G_r} - 1)}}{\cosh^{-1}(\omega/\omega_c)}$$

Where

L is the required insertion loss at frequency ω



* Example

➤ It is desired to design a maximally flat low-pass filter with at least 15 dB attenuation at $\omega = 1.3\omega_c$ and -3 dB at its band edge. How many elements will be required for this filter? If a Chebyshev filter is used with a 3-dB ripple in its pass-band, find the number of circuit elements.

* Solution

$$\zeta = 10^{0.1 \times L_c} - 1 = 10^{0.3} - 1 = 1$$
$$n = \frac{1}{2} \times \frac{\log_{10}(10^{L/10} - 1) - \log_{10}\zeta}{\log_{10}(\omega/\omega_c)} = 0.5 \times \frac{\log_{10}(10^{1.5} - 1)}{\log_{10}(1.3)} = 6.52$$

Therefore, seven elements will be needed for this maximally flat filter.

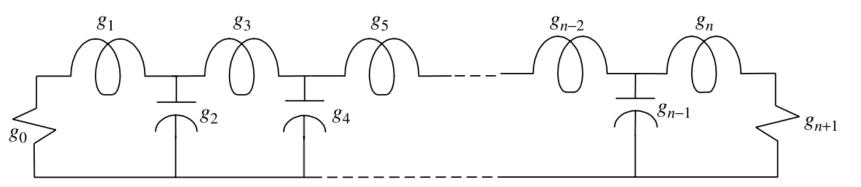
✤In the case of Chebyshev filter

$$m = \frac{\cosh^{-1} \sqrt{\left(10^{0.1 \times L} - 1\right) / \left(10^{0.1 \times G_r} - 1\right)}}{\cosh^{-1} \left(\frac{\omega}{\omega_c}\right)} = \frac{\cosh^{-1} \sqrt{\left(10^{1.5} - 1\right)}}{\cosh^{-1} \left(1.3\right)} = 3.17$$

Therefore, only 3 elements are required

Low-Pass Filter Synthesis

Doubly terminated low-pass ladder network



✤ g signifies the roots of an nth-order transfer function that govern the characteristics of the filter.

* These represent the normalized reactance values of filter elements with a cut-off frequency $\omega_c = 1$.

The source resistance is represented by g_0 , and load is g_{n+1} .

Low-Pass Filter Synthesis

- The filter is made up of
 - series inductors and shunt capacitors that are in the form of cascaded T-networks.
- Another possible configuration is
 - * a cascaded π -network that is obtained after replacing g_1 by a short circuit,
 - \diamond connecting a capacitor across the load g_{n+1} , and
 - \diamond renumbering the filter elements 1 through *n*.
- Elements are determined from the *n* roots of transfer function.

Low-Pass Filter Synthesis

□ The transfer function is selected according to the pass- and stop-band characteristics desired.

- Normalized values of elements are then found from the roots of that transfer function.
- These values are then adjusted according to
 - the desired cut-off frequency and
 - the source and load resistance.

Summary of Design Procedure for Maximally Flat LP Filters

Assume that the cut-off frequency is given as $\omega_c = 1$

For Butterworth

$$★ g_0 = g_{n+1} = 1$$

★ g_p = 2sin $\frac{(2p-1)\pi}{2n}$ p = 1, 2, 3, ...

★ Such element values are given in the following table

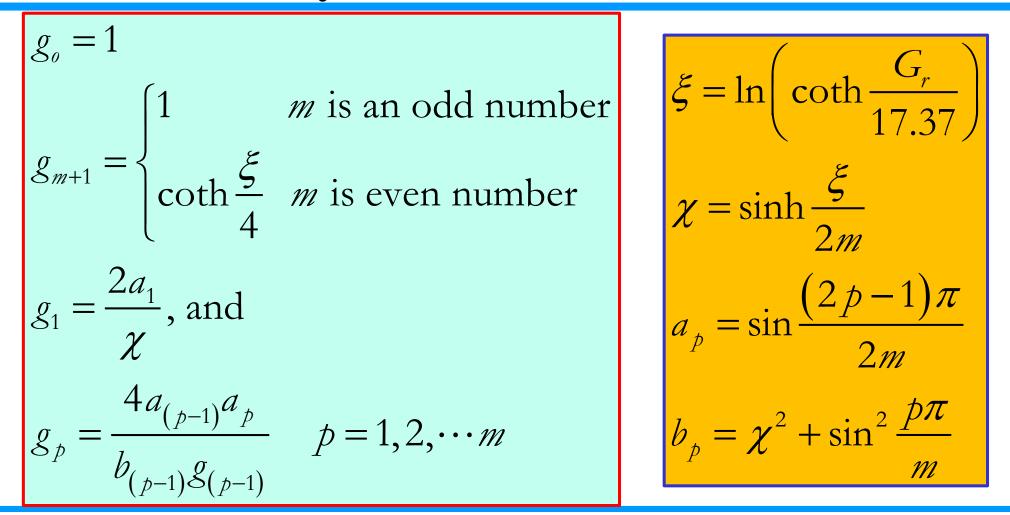
Summary of Design Procedure for Maximally Flat LP Filters

Design values for Low-pass Binomial Filter Prototype

TABLE 9.4 Element Values for Low-Pass Binomial Filter Prototypes ($g_0 = 1$, $\omega_c = 1$)

n	g_1	<i>g</i> ₂	<i>g</i> ₃	g_4	85	g 6	<i>8</i> 7	g_8
1	2.0000	1.0000						
2	1.4142	1.4142	1					
3	1.0000	2.0000	1.0000	1.0000				
4	0.7654	1.8478	1.8478	0.7654	1.0000			
5	0.6180	1.6180	2.0000	1.6180	0.6180	1		
6	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	1	
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.445	1.0000

Summary of Design Procedure for Chebyshev LP Filters



Summary of Design Procedure for Chebyshev LP Filters

Design values for Low-pass Binomial Filter Prototype

TABLE 9.5 Element Values for Low-Pass Chebyshev Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, and 0.1 dB ripple)

т	g_1	<i>g</i> ₂	<i>g</i> ₃	g_4	85	g_6	<i>8</i> 7	g_8
1	0.3053	1.000						
2	0.8431	0.6220	1.3554					
3	1.0316	1.1474	1.0316	1.0000				
4	1.1088	1.3062	1.7704	0.8181	1.3554			
5	1.1468	1.3712	1.9750	1.3712	1.1468	1.0000		
6	1.1681	1.4040	2.0562	1.5171	1.9029	0.8618	1.3554	
7	1.1812	1.4228	2.0967	1.5734	2.0967	1.4228	1.1812	1.0000

Scaling the Prototype to the Desired Cutoff Frequency and Load

\Box Frequency scaling from 1 to ω_c .

- divide all normalized g values that represent capacitors or inductors by the desired cut-off frequency expressed in radians per second.
 Resistors are excluded from this operation.
- Impedance scaling g_0 and g_{n+1} to X Ω from unity.
 - \mathbf{x} multiply all *g* values that represent resistors or inductors by X.
 - On other hand, divide those *g* values representing capacitors by X.

LP Butterworth example

* Example

➢ Design a Butterworth filter with a cut-off frequency of 10 MHz and an insertion loss of 30 dB at 40 MHz. It is to be used between a 50 Ω load and a generator with an internal resistance of 50 Ω.

Solution

$$n = \frac{1}{2} \times \frac{\log_{10}(10^{30/10} - 1) - \log_{10}(10^{3/10} - 1))}{\log_{10}(40/10)}$$
$$= \frac{1}{2} \times \frac{\log_{10}(10^3 - 1) - \log_{10}(1.9953 - 1))}{\log_{10}(4)} \approx \frac{0.5 \times 3}{0.6} \approx 2.5$$

Therefore, n = 3 elements will be needed for this maximally flat filter.

LP Butterworth example

	scaling element values
$g_0 = g_4 = 1$ $g_1 = 2\sin\frac{(2-1)\pi}{2\times3} = 2\sin\frac{\pi}{6} = 1$	$L_1 = L_3 = 50 \times \frac{1}{2\pi \times 10^7} \text{H} = 795.77 \text{ nH}$
$g_{1} = 2 \sin \frac{\pi}{2 \times 3} = 2 \sin \frac{\pi}{6} = 1$ $g_{2} = 2 \sin \frac{(4-1)\pi}{2 \times 3} = 2 \sin \frac{\pi}{2} = 2$	$C_2 = \frac{1}{50} \times \frac{2}{2\pi \times 10^7} F = 636.62 \mathrm{pF}$
	795.77 nH 795.77 nH
$g_3 = 2\sin\frac{(6-1)\pi}{2\times3} = 2\sin\frac{5\pi}{6} = 1$	$ \begin{array}{c c} 50 \Omega \\ \hline R_0 = R_s \\ \hline 636.62 \text{ pF} \\ \hline C_2 \\ \hline 50 \Omega \\ \hline 50 \Omega \end{array} $

LP Chebyshev example

* Example

➢ Design a low-pass Chebyshev filter that may have ripples no more than 0.01 dB in its pass-band. The filter must pass all frequencies up to 100 MHz and attenuate the signal at 400 MHz by at least 5 dB. The load and the source resistance are of 75 Ω each.

* Solution

Since
$$G_r = 0.01$$
 and $L = 5$ dB
$$m = \frac{\cosh^{-1} \sqrt{(10^{0.5} - 1)/(10^{0.001} - 1)}}{\cosh^{-1}(4)} = 2$$

Since we want a symmetrical filter with 75 Ω on each side, we select m = 3.

LP Chebyshev example

$$g_0 = g_4 = 1$$

$$a_1 = \sin \frac{(2-1)\pi}{2 \times 3} = \sin \frac{\pi}{6} = 0.5$$

$$a_2 = \sin \frac{(4-1)\pi}{2 \times 3} = \sin \frac{\pi}{2} = 1$$

$$a_3 = \sin \frac{(6-1)\pi}{2 \times 3} = \sin \frac{5\pi}{6} = 0.5$$

$$\xi = \ln\left(\coth\frac{0.01}{17.37}\right) = 7.5$$
$$\chi = \sinh\frac{7.5}{6} = 1.6019$$
$$b_1 = 1.6019^2 + \sin^2\frac{\pi}{3} = 3.316$$
$$b_2 = 1.6019^2 + \sin^2\frac{2\pi}{3} = 3.316$$
$$b_3 = 1.6019^2 + \sin^2\frac{3\pi}{3} = 2.566$$

LP Chebyshev example

$$g_0 = g_4 = 1$$

$$g_1 = \frac{2 \times 0.5}{1.6019} = 0.62425$$

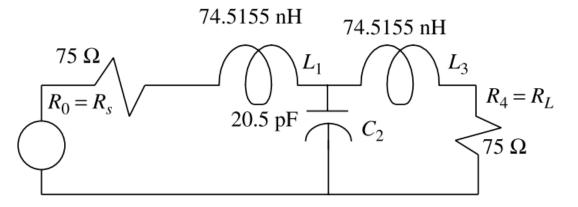
$$g_2 = \frac{4 \times 0.5 \times 1}{3.316 \times 0.62425} = 0.9662$$

$$g_3 = \frac{4 \times 1 \times 0.5}{3.316 \times 0.9662} = 0.62425$$

scaling element values

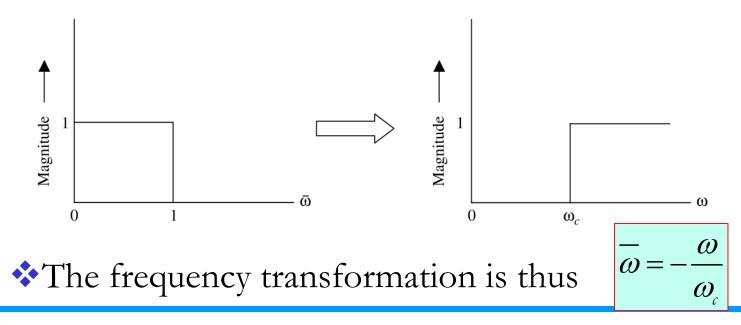
$$L_1 = L_3 = \frac{75 \times 0.62425}{2\pi \times 10^8} \text{H} = 74.5155 \text{ nH}$$

$$C_2 = \frac{1}{75} \times \frac{1}{2\pi \times 10^8} \times 0.9662 \,\mathrm{F} = 20.5 \,\mathrm{pF}$$



A high-pass filter can be designed by

- *transforming the low-pass prototype
- The frequency transformation is shown below



Thus, inductors and capacitors will change their places.

- *Inductors will replace the shunt capacitors of the low-pass filter and
- * capacitors will be connected in series, in place of inductors.
- □ The elements are determined as follows:

$$C_{\rm HP} = \frac{1}{\omega_c g_L} \qquad \qquad L_{\rm HP} = \frac{1}{\omega_c g_C}$$

Capacitor $C_{\rm HP}$ and inductor $L_{\rm HP}$

*are then scaled as required by the load and source resistance.

* Example

Design a high-pass Chebyshev filter with pass-band ripple magnitude less than 0.01 dB. It must pass all frequencies over 100 MHz and exhibit at least 5 dB of attenuation at 25 MHz. Assume that the load and source resistances are at 75 Ω each.

* Solution

The low-pass filter designed in Example 9.7 provides the initial data for this high-pass filter. With m = 3, $g_L = 0.62425$, and $g_C = 0.9662$,

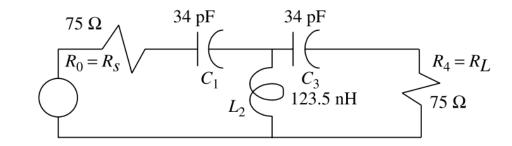
$$C_{\rm HP} = \frac{1}{2\pi \times 10^8 \times 0.62425}$$
 F = 2.5495 nF

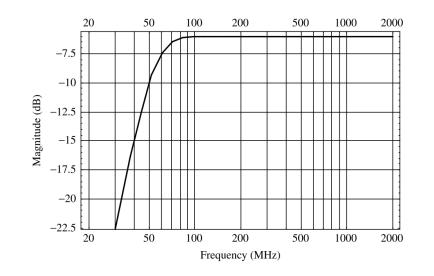
$$L_{\rm HP} = \frac{1}{2\pi \times 10^8 \times 0.9662} \,\,\mathrm{H} = 1.6472 \,\,\mathrm{nH}$$

 \clubsuit applying the resistance scaling, we get

$$C_1 = C_3 = \frac{2.5495}{75} \text{ nF} \approx 34 \text{ pF}$$

 $L_2 = 75 \times 1.6472 \text{ nH} = 123.5 \text{ nH}$

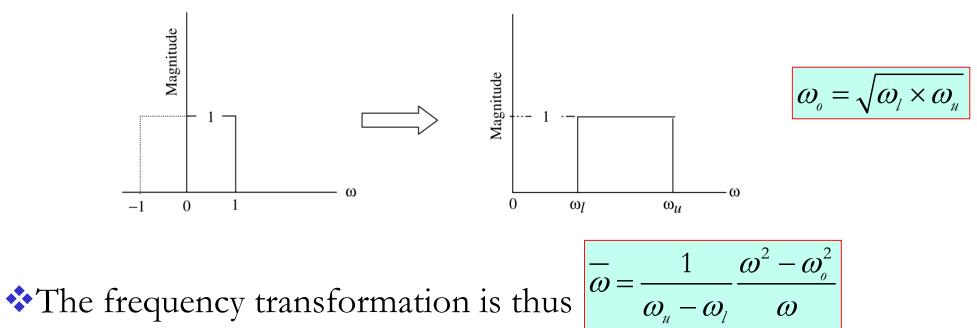




A band-pass filter can be designed by

*transforming the low-pass prototype

The frequency transformation is shown below



This transformation

replaces the series inductor of low-pass prototype with
 an inductor L_{BP1} and a capacitor C_{BP1} that are connected in series.
 The components values are determined as follows:

The components values are determined as follows:

$$L_{\rm BP2} = \frac{\omega_{\mu} - \omega_{l}}{\omega_{o}^{2} g_{C}} \qquad \qquad C_{\rm BP2} = \frac{g_{C}}{\omega_{\mu} - \omega_{l}}$$

These elements need to be scaled further as desired by the load and source resistance.

* Example

► Design a bandpass Chebyshev filter that exhibits no more than 0.01-dB ripples in its passband. It must pass signals in the frequency band 10 to 40 MHz with zero insertion loss. Assume that the load and source resistances are at 75 Ω each.

Solution

$$f_o = \sqrt{f_I f_u} = \sqrt{10^7 \times 40 \times 10^6} = 20 \times 10^6 \text{ Hz}$$

With $m = 3$, $g_L = 0.62425$, and $g_C = 0.9662$,
 $C_{BP1} = \frac{2\pi \times 10^6 (40 - 10)}{(2\pi \times 20 \times 10^6)^2 \times 0.62425}$ F = 19.922 nF

$$L_{BP1} = \frac{0.62424}{2\pi \times 30 \times 10^{6}} H = 3.3116 \text{ nH}$$

$$L_{BP2} = \frac{2\pi \times 10^{6} (40 - 10)}{(2\pi \times 20 \times 10^{6})^{2} \times 0.9662} H = 12.354 \text{ nH}$$

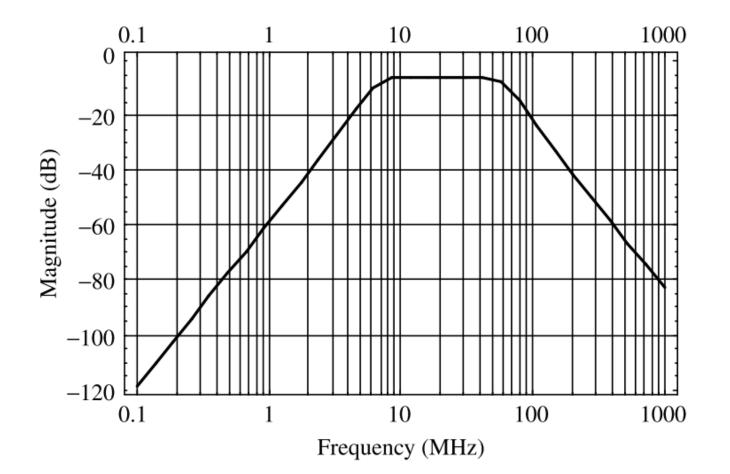
$$C_{BP2} = \frac{0.9662}{2\pi \times 30 \times 10^{6}} F = 5.1258 \text{ nF}$$

$$C_{1} = C_{3} = \frac{19.122}{75} \text{ nF} = 254.96 \text{ pF} \approx 255 \text{ pF}$$

$$L_{1} = L_{3} = 75 \times 3.3116 \text{ nH} = 0.2484 \mu\text{H}$$

$$L_{2} = 75 \times 12.354 \text{ nH} = 0.9266 \mu\text{H}$$

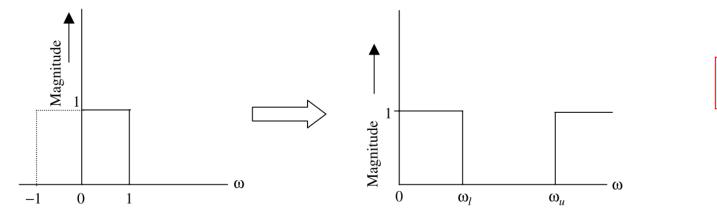
$$C_{2} = \frac{5.1258}{75} \text{ nF} = 68.344 \text{ pF}$$



A band-pass filter can be realized by

*transforming the low-pass prototype

The frequency transformation is shown below



$$\omega_{o} = \sqrt{\omega_{l} \times \omega_{u}}$$

The frequency transformation is thus $\overline{\omega} = (\omega_{\mu} - \omega_{i})$

This transformation

★replaces the series inductor of low-pass prototype with
▶an inductor L_{BS1} and a capacitor C_{BS1} that are connected in parallel.
★The components values are determined as follows:

$$L_{\rm BS1} = \frac{\left(\omega_{\mu} - \omega_{l}\right)g_{\rm L}}{\omega_{o}^{2}} \qquad C_{\rm BS1} = \frac{1}{\left(\omega_{\mu} - \omega_{l}\right)g_{\rm L}}$$

Also, C_{BS2} which is connected in series with an inductor L_{BS2},
is will replace the shunt capacitor of the low-pass prototype.

The components values are determined as follows:

These elements need to be scaled further as desired by the load and source resistance.

* Example

► Design a maximally flat bandstop filter with n = 3. It must stop signals in the frequency range 10 to 40 MHz and pass the rest of the frequencies. Assume that the load and source resistances are at 75 Ω each.

* Solution

$$f_o = \sqrt{f_l f_u} = \sqrt{10^7 \times 40 \times 10^6} = 20 \times 10^6 \text{ Hz}$$

With n = 3, $g_L = 1$, and $g_C = 2$, from previous example,

$$L_{\rm BS1} = \frac{2\pi \times 10^6 (40 - 10)}{(2\pi \times 20 \times 10^6)^2} \times 1 \text{ H} = 11.94 \text{ nH}$$

$$C_{\rm BS1} = \frac{1}{2\pi \times 10^6 (40 - 10) \times 1} \,\,{\rm F} = 5.305 \,\,{\rm nF}$$

$$L_{\rm BS2} = \frac{1}{2\pi \times 10^6 (40 - 10) \times 2} \rm H = 2.653 \, \rm nH$$

$$C_{\rm BS2} = \frac{2\pi \times 10^6 (40 - 10)}{(2\pi \times 20 \times 10^6)^2} \times 2\,\rm F = 23.87\,\rm nF$$

Applying the resistance scaling,

$$C_{2} = \frac{23.87}{75} \text{ nF} = 318.3 \text{ pF}$$

