Ch. 7 Power Dividers and Directional Couplers

7 Power Dividers and Directional Couplers 334

- Directional couplers (4-port network) - arbitrary power division (10 dB, 20 dB, 3 dB, etc.)
- Hybrid junctions (4-port network) - equal power division (3 dB)

7 Power Dividers and Directional Couplers

HISTORY

1940

- US MIT Radiation Laboratory developed mainly waveguide-type coupler, power divider, T junction etc.

Mid 1950~ 1960

- development of devices for mainly planar stripline and also

microstrip circuits. (Wilkinson divider, branch line hybrid,

coupled line directional coupler etc)

7.1 Basic Properties of Dividers and Couplers

Three-Port Networks (T-junctions)

 $[S]$

S

 $\overline{}$ $\overline{}$

Ξ

 $\overline{}$

 $\overline{}$ I Γ **11 12 13** *S*₁₁ *S*₁₂ *S* $\bm{\left[S \right]}$ of an arbitrary 3-port network

31 32 33

*S*₂₁ *S*₂₂ *S*

*S*²¹*S***²³***S*^{*S*}

21 22 23

I

 (9 independent elements)

If the component is passive and contains no anisotropic materials,

① network is reciprocal and
$$
S_{ij} = S_{ji}
$$
 ([S] is symmetric) (Recall)

If the component is lossless and all ports are matched, $\begin{bmatrix} \mathcal{S} \end{bmatrix}^t \begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} U \end{bmatrix}$ $\begin{bmatrix} \mathcal{S} \end{bmatrix}$ is a unitary matrix) 3 $S_{ii} = 0$ Ξ ł *S* (Recall)

7.1 Basic Properties of Dividers and Couplers

From conditions (1) , (3) From conditions 2 $S_{13}^*S_{23} = 0$ (r 1 c 2), $S_{23}^*S_{12} = 0$ (r 3 c 1), $S_{12}^*S_{13} = 0$ (r 2 c 3) (7.3 d~f) $(7.3 a \sim c)$ from (7.3 d~f) S_{13} , S_{23} , S_{12} 2 out of the 3 parameters must be 0. In that case however $(7.3 \text{ a} \sim c)$ will not be satisfied. $S_{12}|^2 + |S_{13}|^2 = 1$, $|S_{12}|^2 + |S_{23}|^2 = 1$, $|S_{13}|^2 + |S_{23}|^2 = 1$ $[S]$ I I I J I l l $\overline{}$ ſ Ξ **31 32 33 21 22 23 11 12 13** *S*²¹*S*^{²*S***₂₂}***S*</sup> *S*²¹ *S*²² *S S*₁₁ *S*₁₂ *S* $S = |S_{21} S_{22} S_{23}|$ [S] I I $\overline{}$ $\overline{}$ I $\overline{}$ I ═ S_{22} 0 **0 0 13 23** 12 \bullet \bullet 23 **12 13** *S S S S S S S* $\overline{}$ $\overline{}$ I $\overline{}$ ヿ I I I L Г Ξ I $\overline{}$ I I I I L Γ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ ヿ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ * c* * Ω Ω^* ∗ רא **0 0 1 0 1 0 1 0 0** S_{22} 0 **0 0** S_{22}^* 0 **0 0 13 23** 12 \bullet $\frac{12}{23}$ **12 13 13 23** 12 \bullet $\frac{12}{23}$ **12 13** *S S S S S S S S S*^{*s***} 0** *S*</sup> *S S* $[S^*]^t[S] = [U]$ = ÷

∴ A Lossless, reciprocal 3-port network cannot be matched at all ports: - 3 port, Lossless, reciprocal, all ports matched: Not physically realizable

However, relaxing one of the 3 conditions makes it physically realizabley 1-7

Circulator

 $[S] % \begin{center} % \includegraphics[width=\linewidth]{imagesSupplemental_3.png} % \end{center} % \caption { % Our method can be used for a different image. % } % \label{fig:example} %$

S

 $\overline{}$ I $\overline{}$

Ξ

Γ

0

 $\overline{}$

A key physically realizable 3-port network. (matched, lossless, but nonreciprocal)

>

 $\overline{}$

 S_{22} 0

21 23

S S

12 13

 0

S S

31 32

S S

ヿ

$$
\begin{bmatrix} S^* \end{bmatrix}^t \begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{21}^* & S_{31}^* \\ S_{12}^* & 0 & S_{32}^* \\ S_{13}^* & S_{23}^* & 0 \end{bmatrix} \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{21} & 0 & S_{23} \\ S_{31} & S_{32} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [U] \text{ from this,}
$$

\n
$$
S_{31}^* S_{32} = 0 \text{ (r 1 c 2)} , S_{21}^* S_{23} = 0 \text{ (r 1 c 3)} , S_{12}^* S_{13} = 0 \text{ (r 2 c 3)}
$$

\n
$$
|S_{21}|^2 + |S_{31}|^2 = 1 , |S_{12}|^2 + |S_{32}|^2 = 1 , |S_{13}|^2 + |S_{23}|^2 = 1
$$

\n
$$
= 1 \text{ (7.5 a-c)}
$$

\n
$$
|S_{21}|^2 + |S_{31}|^2 = 1 , |S_{12}|^2 + |S_{32}|^2 = 1 , |S_{13}|^2 + |S_{23}|^2 = 1
$$

For equations $(7.5 \text{ a} \sim \text{f})$ to be satisified,

- (7.6 a) $S_{12} = S_{23} = S_{31} = 0$, $|S_{21}| = |S_{32}| = |S_{13}| = 1$
- or $S_{21} = S_{32} = S_{13} = 0$, $|S_{12}| = |S_{23}| = |S_{31}| = 1$ (7.6 b)

<Clockwise circulation> <Counterclockwise circulation>

For this example of Physically realizable 3-port network

- If Lossless, reciprocal only 2 ports matched
- If Matched, reciprocal , then lossy circuit: resistive divider

Four-Port Networks (Directional Couplers)

If the 4-port network is matched, reciprocal, and lossless
\n
$$
[S^*]'[S] = [U]
$$
 must be satisfied
\n
$$
\begin{bmatrix} 0 & S_{12}^* & S_{13}^* & S_{14}^* \\ S_{12}^* & 0 & S_{23}^* & S_{24}^* \\ S_{13}^* & S_{23}^* & 0 & S_{34}^* \end{bmatrix} \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14}^* & S_{24}^* & S_{34}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$
\n
$$
S_{13}^* S_{23} + S_{14}^* S_{24} = 0 \text{ (r 1 c 2), } S_{14}^* S_{13} + S_{24}^* S_{23} = 0 \text{ (r 4 c 3)} \text{ (7.10 a-b)}
$$
\nMultiply (7.10 a) by S_{24}^* and (7.10 b) by S_{13}^* and subtract the results
\n
$$
S_{14}^* (|S_{13}|^2 - |S_{24}|^2) = 0
$$
\nSimilarly
\n
$$
S_{12}^* S_{23} + S_{14}^* S_{34} = 0 \text{ (r 1 c 3), } S_{14}^* S_{12} + S_{34}^* S_{23} = 0 \text{ (r 4 c 2)} \text{ (7.12 a-b)}
$$

Multiply (7.12 a) by S_{12} and (7.12 b) by S_{34} and subtract the results $\left(S_{12}|^{2}-|S_{34}|^{2}\right)=0$ **3 4** S_{23} $\left| S_{12} \right|^2 - \left| S_{34} \right|^2 =$ (7.13) The only way to satisfy (7.11) and (7.13) is lnput (1) $\left| S_{14} = S_{23} = 0 \right|$ (x,tics of directional coupler) With this conditions, equations for the principal diagonal are: 1, $|S_{12}|^2 + |S_{24}|^2 = 1$, $|S_{13}|^2 + |S_{34}|^2 = 1$, $|S_{24}|^2 + |S_{34}|^2 = 1$ **3 4 2 2 4 2 3 4 2 1 3 2 2 4 2 1 2 2 1 3** $S_{12}|^2 + |S_{13}|^2 = 1$, $|S_{12}|^2 + |S_{24}|^2 = 1$, $|S_{13}|^2 + |S_{34}|^2 = 1$, $|S_{24}|^2 + |S_{34}|^2 = 1$ $(7.14$ a~d) Thus, from (7.14 a, b), $|S_{13}| = |S_{24}|$ and from (7.14 b, d) $|S_{12}| = |S_{34}|$ For simplicity, set. $S_{12} = S_{34} = \alpha$, $S_{13} = \beta e^{j\theta}$, $S_{24} = \beta e^{j\phi}$ Multiplying row2 by column 3 $S_{12}^*S_{13} + S_{24}^*S_{34} = 0$ and substituting above, $\alpha \beta e^{j\theta} + \alpha \beta e^{-j\phi} = 0$ \blacksquare $\therefore e^{j\theta} + e^{-j\phi} = 0$ **Isolated** 4 Through 4) 3 Coupled Ⅶ- 11

Two practically useful coupler $\boldsymbol{\theta} = \boldsymbol{\phi} = \boldsymbol{\pi}/2$ and $\boldsymbol{\theta} = \boldsymbol{0}$, $\boldsymbol{\phi} = \boldsymbol{\pi}$

 $|S|$ $\overline{}$ $\overline{}$ I $\overline{}$ L I I L I I $\overline{\mathsf{L}}$ I $=$ **0 1 0 0 0 1 1 0 0 0 1 0 2 1** *j j j j* $[S] = \begin{array}{c} \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \end{array}$ \blacksquare *S* $\left[S\right]$ \Box l I l I I ▀ $=\frac{1}{\sqrt{2}}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ **0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 2 1** *S* Eg. $\textcircled{1}$) For a Coupling factor of 3 dB $\left(\alpha = \beta = 1/\sqrt{2}\right)$ and a phase Difference of 90° between port 2 and port 3, we have **quadrature hybrid** J $\overline{}$ J J \rfloor J I I I I $\overline{}$ I = $\begin{array}{ccc} 0 & j\beta & \alpha & 0 \end{array}$ **0 0** α 0 0 $\begin{pmatrix} 0 & \alpha & j\beta & 0 \end{pmatrix}$ $\bm{\beta}$ $\bm{\alpha}$ β 0 0 α α 0 0 $j\beta$ α j β *j j j j S* I I I ヿ I l I l Γ $=$ $\begin{array}{ccc} a & v & v \\ v & v & v \\ v & v & v \end{array}$ $\begin{bmatrix} 0 & -\beta & \alpha & 0 \end{bmatrix}$ **0 0** α 0 0 $\begin{array}{ccc} 0 & \alpha & \beta & 0 \end{array}$ β α β 0 0 α α 0 0 $-\beta$ α β *S* Eg. (2) For a Coupling factor of 3 dB $\alpha = \beta = 1/\sqrt{2}$ and phase difference of 180° between ports 4 and 1, we have **nagic-T** or rat-race hybrid (2)) For a Coupling factor of 3 dB $\left(\alpha = \beta = 1/\sqrt{2}\right)$ Ⅶ- 15

7.2 T-junction Power Divider

Eg. 7.1) For T-junction power divider of $Z_0 = 50 \Omega$, determine \mathbf{Z}_1 , \mathbf{Z}_2 for \boldsymbol{P}_{in} divided in the ratio 1 : 2). Assume $\boldsymbol{B} = \boldsymbol{0}$

7.3 Wilkinson Power Divider

- Lossy 3-port network with match at all ports
- When only Output ports are matched, we have lossless operation
- Reflected power dissipated in $2Z_0$ resistor and not delivered to other output port. i.e. $S_{32} = S_{23} = 0$. (\cdots isolation between Output ports)

Fig. 7.8 Wilkinson power divider

The *S* parameters of Wilkinson divider are

$$
S_{11} = 0
$$
 ($Z_{in} = 1$ at port 1)
\n
$$
S_{22} = S_{33} = 0
$$
 (port 2 and 3 matched for even and odd modes)
\n
$$
S_{12} = S_{21} = \frac{V_1^e + V_1^o}{V_2^e + V_2^o} = \frac{-j\sqrt{2}V + 0}{V + V} = \frac{-j\sqrt{2}V}{2V} = -\frac{j}{\sqrt{2}}
$$
(symmetry due to reciprocity)
\n
$$
S_{13} = S_{31} = -\frac{j}{\sqrt{2}}
$$
(symmetry of ports 2 and 3)
\n
$$
S_{23} = S_{32} = 0
$$
(due to short or open at bisection)

<u> 7.5 Quadrature (90°) Hybrid</u>

3 dB directional coupler with 90° phase difference between Output port

7.8 180 Hybrid

4-port network with 180° phase difference between the output ports

- With input at port 1, inphase output divided into ports 2 and 3, port 4 is isolated
- With input at port 4, 180° phase difference output divided into ports 2 and 3, port 1 is isolated.
- When operating as a combiner, with inputs at ports 2 and 3, sum of inputs appear at port 1 and difference of input at port 4

7.8 180° Hybrid