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Preface to the Twenty-Third
Revised Multicoloured Edition

revised first multicoloured edition of Vol. | of “A Textbook of

Electrical Technology”. To provide acomprehensive treatment
of topics in “/Basic Electrical Engineering’’ both for electrical as well
as non-electrical students pursuing their studies in civil, mechanical,
mining, textile, chemical, industrial, environmental, aerospace, electronic
and computer engineering, information technology both at the Degree
and Diploma level. Based on the suggestions received from our
esteemed readers, both from India and abroad, the scope of the book
has been enlarged according to their requirements.

ﬁ uthors feel happy to present to their esteemed readers this

Establishment of Technological Universities have taken place in
recent past. This resulted into a pool of expert manpower within a
large area. Unification of syllabi has taken place and the question
papers set during the last 4-5 years have a wider variety and are of
more inquisitive nature. Solutions to these with brief logical reasonings
have been added for the benefit of our student community.

Many universities include a brief coverage on methods of “Electrical
Power Generation”, in their first and basic paper on this subject.
Hence, this revision includes an introductory chapter on this topic.

It is earnestly hoped that with these extensive additions and
revisions, this revised edition will prove even more useful to our
numerous readers in developing more confidence while appearing at
national competitive examinations.

I would like to thank my Publishers particularly Mr. Ravindra
Kumar Gupta, M.D. and Mr. Bhagirath Kaushik, Regional Manager
(Western India) of S. Chand & Company Ltd., for the personal interest
they look in the publishing of this revised and enlarged edition.

Our student-friends, teacher-colleagues, Booksellers and University
authorities have been showing immense faith and affection in our
book, which is acknowledged with modesty and regards. We are sure
that this revised edition will satisfy their needs to a still greater extent
and serve its cause more effectively.
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Preface to the Twenty-second Edition

1 I “he primary objective of Vol. | of A Textbook of Electrical
Technology isto provide acomprehensive treatment of topics in
““Basic Electrical Engineering’’ both for electrical as well as non-

electrical students pursuing their studies in civil, mechanical, mining,

textile, chemical, industrial, environmental, aerospace, electronic
and computer engineering both at the Degree and Diploma level.

Based on the suggestions received from our esteemed readers, both

from India and abroad, the scope of the book has been enlarged

according to their requirements. Almost half the solved examples
have been deleted and replaced by latest examination papers set upto

1994 in different engineering colleges and technical institutions in

India and abroad.

Following major additions/changes have been made in the present
edition :

1. Three new chapters entitled (a) A.C. Network Analysis (b) A.C.
Filter Networks and (c) Fourier Series have been added thereby
widening the scope of the book.

2. The chapter on Network Theorems has been updated with the
addition of Millman’s Theorem (as applicable to voltage and current
sources or both) and an article on Power Transfer Efficiency relating
to Maximum Power Transfer Theorem.

3. The additions to the chapter on Capacitors include detailed
articles on Transient Relations during Capacitor Charging and Discharging
Cycles and also the Charging and Discharging of a Capacitor with
Initial Charge.

4. Chapter on Chemical Effects of Current has been thoroughly
revised with the inclusion of Electronic Battery Chargers, Static
Uninterruptable Power Supply (UPS) Systems, High Temperature
Batteries, Secondary Hybrid Cells, Fuel Cells and Aircraftand Submarine
Batteries.

5. A detailed description of Thermocouple Ammeter has been
added to the chapter on Electrical Instruments.

6. The chapter on Series A.C. Circuits has been enriched with
many articles such as Determination of Upper and Lower Half-power
Frequencies, Value of Edge Frequencies and Relation between
Resonant Power and Off-resonance Power.

It is earnestly hoped that with these extensive additions and
revisions, the present edition will prove even more useful to our
numerous readers than the earlier ones.

As ever before, we are thankful to our publishers particularly Sh.
Ravindra Kumar Gupta for the personal interest he took in the
expeditious printing of this book and for the highly attractive cover
design suggested by him. Our sincere thanks go to their hyperactive
and result-oriented overseas manager for his globe-trotting efforts to
popularise the book from one corner of the globe to the other. Lastly
we would love to record our sincere thanks to two brilliant ladies; Mrs.
Janaki Krishnan from ever-green fairy land of Kerala and Ms. Shweta
Bhardwaj from the fast-paced city of Delhi for the secretarial support
they provided us during the prepration of this book.
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4 Ohm's law defines the relationship
between voltage, resistance and
current. This law is widely employed
while designing electronic circuits



2 Electrical Technology

1.1. Electron Drift Velocity

The electron moves at the

Suppose that in a conductor, the number of free electrons e e s

available per m’ of the conductor material is 7 and let their a tiny drift velocity superimposed
axial drift velocity be v metres/second. In time dt, distance by the applied electric field
travelled would be v x dt. If 4 is area of cross-section of the _—
conductor, then the volume is vAdt and the number of elec- R
trons contained in this volume is v4 dt. Obviously, all these = e +
electrons will cross the conductor cross-section in time dt. If -
e is the charge of each electron, then total charge which crosses Vd velocity ~— —€—
the section in time dt is dq = ndev dt. ' Elnotic
Since current is the rate of flow of charge, it is given as Field E
._dq ndevdt  ._
i 7 — . i=ndev

Current density, J=i/4A=nev ampere/metre2
Assuming a normal current density J = 1.55 X 10° A/mz, n =10 for a copper conductor
and e = 1.6 x 10™° coulomb, we get
155% 10° = 10¥x 1.6x 107 x v v =9.7x 10° m/s = 0.58 cm/min

It is seen that contrary to the common but mistaken view, the electron drift velocity is rather very
slow and is independent of the current flowing and the area of the conductor.

=
N.B.Current density i.e., the current per unit area, is a vector quantity. It is denoted by the symbol J .

—
Therefore, in vector notation, the relationship between current / and J is:

- - - . .
I = J.ga [where a is the vector notation for area ‘a’]

For extending the scope of the above relationship, so that it becomes applicable for area of any shape, we
write :

I = J.da

The magnitude of the current density can, therefore, be written as J-o.

Example 1.1. A4 conductor material has a free-electron density of 1 0° electrons per metre’.
When a voltage is applied, a constant drift velocity of 1.5 x 1 07 metre/second is attained by the
electrons. If the cross-sectional area of the material is | em’, calculate the magnitude of the current.
Electronic charge is 1.6 x 107 coulomb. (Electrical Engg. Aligarh Muslim University)

Solution. The magnitude of the current is

~.

= nAev amperes

= 10*;4=1cm’=10"m?

1.6x 107 C;v=15x% 107 m/s

= 10" % 10*%x 1.6x 10" x 1.5%x 102 =0.24 A

Here,

[N
I

~.

1.2. Charge Velocity and Velocity of Field Propagation

The speed with which charge drifts in a conductor is called the velocity of charge. As seen from
above, its value is quite low, typically fraction of a metre per second.

However, the speed with which the effect of e.m.f. is experienced at all parts of the conductor
resulting in the flow of current is called the velocity of propagation of electrical field. It is indepen-
dent of current and voltage and has high but constant value of nearly 3 X 10® ms.
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Example 1.2. Find the velocity of charge leading to 1 A current which flows in a copper
conductor of cross-section 1 em’ and length 10 km. Free electron density of copper = 8.5 X 1 0’ per
m3. How long will it take the electric charge to travel from one end of the conductor to the other?

Solution. i =neAdv or Vv =i/ned

v = 1/85x 10%x 1.6x 10 x 1x 10%)=7.35x 107 m/s =0.735 pm/s
Time taken by the charge to travel conductor length of 10 km is
distance _ 10X 10°
velocity  735x107
Now, 1 year =365 x 24 x 3600 =31,536,000 s
t = 1.36x 10'°/31,536,000 = 431 years

=136x 105

1.3. The Idea of Electric Potential

In Fig. 1.1, a simple voltaic cell is shown. It consists of copper plate (known as anode) and a
zinc rod (7.e. cathode) immersed in dilute sulphuric acid (H,SO,) contained in a suitable vessel. The
chemical action taking place within the cell causes the electrons to be removed from copper plate and
to be deposited on the zinc rod at the same time. This transfer of electrons is accomplished through
the agency of the diluted H,SO, which is known as the electrolyte. The result is that zinc rod becomes
negative due to the deposition of electrons on it and the copper plate becomes positive due to the
removal of electrons from it. The large number of electrons collected on the zinc rod is being attracted
by anode but is prevented from returning to it by the force set up by the chemical action within the cell.

Conventional Direction

of Current
— AVWWWWWWWWA———————— (S S\

O O O O : rf :
i Direction of i | Water i
i Electron Flow i i‘,/ :
! i
i Direction |
!’ : of Flow !
! i
i :
| |
===1-7n i :

| Y

______________

Water Pump

Fig. 1.1. Fig. 1.2

But if the two electrodes are joined by a wire externally, then electrons rush to the anode thereby
equalizing the charges of the two electrodes. However, due to the continuity of chemical action, a
continuous difference in the number of electrons on the two electrodes is maintained which keeps up
a continuous flow of current through the external circuit. The action of an electric cell is similar to
that of a water pump which, while working, maintains a continuous flow of water i.e., water current
through the pipe (Fig. 1.2).

It should be particularly noted that the direction of electronic current is from zinc to copper in
the external circuit. However, the direction of conventional current (which is given by the direction
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of flow of positive charge) is from copper to zinc. In the present case, there is no flow of positive
charge as such from one electrode to another. But we can look upon the arrival of electrons on copper
plate (with subsequent decrease in its positive charge) as equivalent to an actual departure of positive
charge from it.

When zinc is negatively charged, it is said to be at negative potential with respect to the electrolyte,
whereas anode is said to be at positive potential relative to the electrolyte. Between themselves,
copper plate is assumed to be at a higher potential than the zinc rod. The difference in potential is
continuously maintained by the chemical action going on in the cell which supplies energy to establish
this potential difference.

1.4. Resistance

It may be defined as the property of a substance due
to which it opposes (or restricts) the flow of electricity
(i.e., electrons) through it.

Metals (as a class), acids and salts solutions are good
conductors of electricity. Amongst pure metals, silver,
copper and aluminium are very good conductors in the
given order.® This, as discussed earlier, is due to the
presence of a large number of free or loosely-attached
electrons in their atoms. These vagrant electrons assume
a directed motion on the application of an electric potential
difference. These electrons while flowing pass through
the molecules or the atoms of the conductor, collide and
other atoms and electrons, thereby producing heat.

Those substances which offer relatively greater capjes ;re on covered with materials that
difficulty or hindrance to the passage of these electrons do not carry electric current easily

are said to be relatively poor conductors of electricity like

bakelite, mica, glass, rubber, p.v.c. (polyvinyl chloride) and dry wood etc. Amongst good insulators
can be included fibrous substances such as paper and cotton when dry, mineral oils free from acids
and water, ceramics like hard porcelain and asbestos and many other plastics besides p.v.c. It is
helpful to remember that electric friction is similar to friction in Mechanics.

1.5. The Unit of Resistance

The practical unit of resistance is ohm.** A conductor is said to
have a resistance of one ohm if it permits one ampere current to flow
through it when one volt is impressed across its terminals.

For insulators whose resistances are very high, a much bigger unit
isused i.e., mega-ohm = 10° ohm (the prefix ‘mega’ or mego meaning
amillion) or kilo-ohm = 10° ohm (kilo means thousand). In the case of
very small resistances, smaller units like milli-ohm = 10® ohm or mi-
cro-ohm = 10 ohm are used. The symbol for ohm is Q

*  However, for the same resistance per unit length, cross-sectional area of aluminium conductor has to be
1.6 times that of the copper conductor but it weighs only half as much. Hence, it is used where economy
of weight is more important than economy of space.

**  After George Simon Ohm (1787-1854), a German mathematician who in about 1827 formulated the law
known after his name as Ohm’s Law.
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Table 1.1. Multiples and Sub-multiples of Ohm

Prefix Its meaning Abbreviation Equal to
Mega- One million M Q 10° Q
Kilo- One thousand k Q 10° Q
Centi- One hundredth - -
Milli- One thousandth m Q 10° Q
Micro- One millionth pnQ 10° Q

1.6. Laws of Resistance

The resistance R offered by a conductor depends on the following factors :
(i) Tt varies directly as its length, /.

(i) It varies inversely as the cross-section 4 of the conductor.

(iii) It depends on the nature of the material.

(iv) It also depends on the temperature of the conductor.

ﬂ =
A

Current

Smaller 1 Larger 1
Larger A Smaller A
Low R Greater R
Fig. 1.3. Fig. 1.4
Neglecting the last factor for the time being, we can say that
/ _ L .
R o< Y or R—pA ..

where p is a constant depending on the nature of the material of the conductor and is known as its
specific resistance or resistivity.

If in Eq. (i), we put
/ = Imetre and A=1 metrez, then R=p (Fig. 1.4)

Hence, specific resistance of a material may be defined as the resistance between the opposite
faces of a metre cube of that material.

1.7. Units of Resistivity

From Eq. (i), we have p = £2
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In the S.I. system of units,

2
o - A metre” X R ohm _ A_ZR ohm-metre

[ metre

Hence, the unit of resistivity is ohm-metre (£-m).

It may, however, be noted that resistivity is sometimes expressed as so many ohm per m’.

Although, it is incorrect to say so but it means the same thing as ohm-metre.
If [ is in centimetres and 4 in cmz, then p is in ohm-centimetre (€2-cm).

Values of resistivity and temperature coefficients for various materials are given in Table 1.2.
The resistivities of commercial materials may differ by several per cent due to impurities etc.

Table 1.2. Resistivities and Temperature Coefficients

Material

Resistivity in ohm-metre

at 20°C (x 10%)

Temperature coefficient at

20°C (x 107

Aluminium, commercial 2.8 40.3
Brass 6—-8 20
Carbon 3000 — 7000 -5
Constantan or Eureka 49 +0.1 to 0.4
Copper (annealed) 1.72 39.3
German Silver 20.2 2.7
(84% Cu; 12% Ni; 4% Zn)

Gold 2.44 36.5
Iron 9.8 65
Manganin 44 — 48 0.15
(84% Cu ; 12% Mn ; 4% Ni)

Mercury 95.8 8.9
Nichrome 108.5 1.5
(60% Cu ; 25% Fe ; 15% Cr)

Nickel 7.8 54
Platinum 9-155 36.7
Silver 1.64 38
Tungsten 5.5 47
Amber 5% 10"

Bakelite 10"

Glass 10"~ 10"

Mica 10°

Rubber 10"

Shellac 10"

Sulphur 10
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Example 1.3. A4 coil consists of 2000 turns of copper wire hav-

ing a cross-sectional area of 0.8 mm’. The mean length per turn is 80

cm and the resistivity of copper is 0.02 u€2-m. Find the resistance of

the coil and power absorbed by the coil when connected across 110V
d.c. supply.

(E.Y. Engg. Pune Univ. May 1990)

Solution. Length of the coil, / = 0.8 x 2000 = 1600 m ;
A=08mm’=0.8x 10°m’.

R :p% =0.02x 10°x 1600/0.8 x 10°=40Q
Power absorbed = 77/ R=110%/40 = 302.5 W

Example 1.4. An aluminium wire 7.5 m long is connected
in a parallel with a copper wire 6 m long. When a current of' 5 A

Aluminum
is passed through the combination, it is found that the current in
the aluminium wire is 3 A. The diameter of the aluminium wire ~
is I mm. Determine the diameter of the copper wire. Resistivity
of copper is 0.017 u€2m ; that of the aluminium is 0.028 u€2m. Copper
(E.Y. Engg. Pune Univ. May 1991)
Solution. Let the subscript 1 represent aluminium and sub- ———® y &——
script 2 represent copper.
l / R L, a
R, = p—+ and R, =p, % - R N
4 @ 1 Ph %
R p b .
a, = 4. .—=.= (D)
: YR ey
Now I, =3A;,=5-3=2A.
If Vis the common voltage across the parallel combination of aluminium and copper wires, then
V=I1LR=LR, . R/R,=1L/I=2/3
_ md 2 _ WX 1? _T 2
QT Ty Ty Ty
Substituting the given values in Eq. (i), we get
n,2.0017_ 6 2
= SXEXx———x—=0.2544
@ = 47370028775 "
T xd)y /4 = 02544 or d,=0.569 mm

Example 1.5. (a) A4 rectangular carbon block has dimensions 1.0 cm X 1.0 cm X 50 cm.
(i) What is the resistance measured between the two square ends ? (1) between two opposing rectan-
gular faces / Resistivity of carbon at 20°Cis 3.5 x 1 0° Qm.

(b) A current of 5 A exists in a 10-Q resistance for 4 minutes (1) how many coulombs and
(i) how many electrons pass through any section of the resistor in this time ? Charge of the electron

=16x 107 C. (M.S. Univ. Baroda)
Solution.
@ () R =plA
Here, A = 1><121cm2:104m2;120.5m
R =35x% 10°x 0.5/10"=0.175Q
(ii) Here, I = lemAd=1x 50=50cm’=5x 10° m’
R =35x%x 10°x 10%/5x 10°=7x 10° Q
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(b) () Q = It=5%x (4x 60)=1200C
. Q: 1200 _ 20
(i) n=r, —1.6><10_19 75 x 10

Example 1.6. Calculate the resistance of 1 km long cable com- —
posed of 19 stands of similar copper conductors, each strand being '
1.32 mm in diameter. Allow 5% increase in length for the ‘lay’ (twist)
of each strand in completed cable. Resistivity of copper may be

S ~ Cross 's'et':.t.ion ofa a;:kéa..L)undle
taken as 1.72 x 10° Q-m. o s

Solution. Allowing for twist, the length of the stands.
= 1000 m + 5% of 1000 m = 1050 m
Area of cross-section of 19 strands of copper conductors is
19x T xd/4 = 197 x (1.32x 10°)%/4m*

I 1.72x107° x1050x 4
Now, R =p== = 0.694 Q
A4 19x1.32° %10

Example 1.7. A lead wire and an iron wire are connected in Lead
parallel. Their respective specific resistances are in the ratio 49 : 24.
The former carries 80 percent more current than the latter and the

latter is 47 percent longer than the former. Determine the ratio of Iron
their cross sectional areas.

(Elect. Engg. Nagpur Univ. 1993) v &———
Solution. Let suffix 1 represent lead and suffix 2 represent iron. We are given that
p/p, = 49724;ifi,=1,i,=18;ifl;=1,1,=1.47
Now, R, = plll?ll and RzzpziTZ
Since the two wires are in parallel, i, = V/R, and i, = VIR,
Lo R_ph A
i R, 4 p)h
fl? - ’l_—?x% = ox2x1.47= 04
Example 1.8. A piece of silver wire has a resistance of 1 £ What will be the resistance of
manganin wire of one-third the length and one-third the diameter, if the specific resistance of manganin

is 30 times that of silver. (Electrical Engineering-1, Delhi Univ.)
l
Solution. For silver wire, R, = l_l ; For manganin wire, R = P2 A_z
2
1
R, ppoh A4
Now A, = md’/4 and A,=m d}/4 o A4, = dPld)}
2
L
R P b4,
R, = 1 L/, =173, (d,/d)’ = (3/1)" =9; p,/p, =30
R, = 1x30x (1/3)x 9=90Q
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Example 1.9. The resistivity of a ferric-chromium-aluminium alloy is 51 X 10° Qm. A sheet of
the material is 15 cm long, 6 cm wide and 0.014 cm thick. Determine resistance between

(a) opposite ends and (b) opposite sides. (Electric Circuits, Allahabad Univ.)
Solution. (a) As seen from Fig. 1.5 (a) in this case,
/ =15cm=0.15cm
A = 6x 0.014=0.084 cm’
= 0.084x 10*m’ A
oL _51x107x0.15 /15““
R="47 008ax10™
3 <~—6cm —>
=9.1x 107 Q -
(b) As seen from Fig. 1.5 (b) here 0.014 cm
[ =00l4cm=14x 10°m () ()
A =15%x6=90cm’=9x% 10° m’ Fig. 1.5

R =51x 108x 14x 10°9x 10°=793x 107°Q

Example 1.10. The resistance of the wire used for telephone is 35 Qper kilometre when the
weight of the wire is 5 kg per kilometre. If the specific resistance of the material is 1.95 X 1 0% Qm,
what is the cross-sectional area of the wire ? What will be the resistance of a loop to a subscriber
8 km from the exchange if wire of the same material but weighing 20 kg per kilometre is used ?

Solution. Here R = 35 [=1km=1000m; p=1.95x 10®Qm

-8
Now, R = p% or A:% A=1'95X125 X1000 _ <5 7% 10* m
If the second case, if the wire is of the material but weighs 20 kg/km, then its cross-section must

be greater than that in the first case.

Cross-section in the second case = 25—0 X55.7x107° =222.8x10™" m*

_ I 1.95x107* x16000
Length of wire=2x 8=16km=16000m .. R=pP— = = — 140.1 Q
A 222.8x10

2

Tutorial Problems No. 1.1

1. Calculate the resistance of 100 m length of a wire having a uniform cross-sectional area of 0.1 mm’
if the wire is made of manganin having a resistivity of 50 x 10* Qm.
If the wire is drawn out to three times its original length, by how many times would you expect its
resistance to be increased ? [500 € 9 times]

2. A cube of a material of side 1 cm has a resistance of 0.001 Q between its opposite faces. If the same
volume of the material has a length of 8 cm and a uniform cross-section, what will be the resistance
of this length ? [0.064 Q]
3. Alead wire and an iron wire are connected in parallel. Their respective specific resistances are in the
ratio 49 : 24. The former carries 80 per cent more current than the latter and the latter is 47 per cent
longer than the former. Determine the ratio of their cross-sectional area. [2.5:1]
4. A rectangular metal strip has the following dimensions :
x = 10cm,y=0.5cm,z=02cm
Determine the ratio of resistances R, R, and R_ between the respective pairs of opposite faces.
R, : Ry: R, : 10,000 : 25 : 4] (Elect. Engg. A M.Ae. S.1.)
5. The resistance of a conductor 1 mm” in cross-section and 20 m long is 0.346 Q. Determine the specific
resistance of the conducting material. [1.73 x 10® Q-m] (Elect. Circuits-1, Bangalore Univ. 1991)
6. When a current of 2 A flows for 3 micro-seconds in a coper wire, estimate the number of electrons
crossing the cross-section of the wire. (Bombay University, 2000)
Hint : With 2 A for 3 p Sec, charge transferred = 6 p-coulombs

Number of electrons crossed = 6 X 10“5/(1‘6 X 10_19) =3.75%x 10"
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1.8. Conductance and Conductivity

Conductance (G) is reciprocal of resistance®. Whereas resistance of a conductor measures the
opposition which it offers to the flow of current, the conductance measures the inducement which it
offers to its flow.

From Eq. (i) of Art. 1.6, R = P% or G=%-%=GI—A
where o is called the conductivity or specific conductance of a conductor. The unit of conductance
is siemens (S). Earlier, this unit was called mho.

It is seen from the above equation that the conductivity of a material is given by

i X t .
c =G L G slomem < mote =G % siemens/metre

A A metre?
Hence, the unit of conductivity is siemens/metre (S/m).

1.9. Effect of Temperature on Resistance

The effect of rise in temperature is :

(i) toincrease the resistance of pure metals. The increase is large and fairly regular for normal
ranges of temperature. The temperature/resistance graph is a straight line (Fig. 1.6). As
would be presently clarified, metals have a positive temperature co-efficient of resistance.

(i) to increase the resistance of alloys, though in their case, the increase is relatively small and
irregular. For some high-resistance alloys like Eureka (60% Cu and 40% Ni) and manganin,
the increase in resistance is (or can be made) negligible over a considerable range of
temperature.

(iii) to decrease the resistance of electrolytes, insulators (such as paper, rubber, glass, mica etc.)
and partial conductors such as carbon. Hence, insulators are said to possess a negative
temperature-coefficient of resistance.

1.10. Temperature Coefficient of Resistance

Let a metallic conductor having a resistance of R, at 0°C be heated of #°C and let its resistance at
this temperature be R,. Then, considering normal ranges of temperature, it is found that the increase
in resistance A R = R, —R,, depends

(i) directly on its initial resistance
(ii) directly on the rise in temperature
(iii) on the nature of the material of the conductor.
or R,—R, o< Rxt or R,—-R,=0R;t (D)

where o (alpha) is a constant and is known as the temperature coefficient of resistance of the conduc-
tor.

R 10 Fa (i R —-Ry AR
earrangin, (1), we get = T <
ging Eq. (1), we g Ryxt Ryt
If R, = 1Qt=1°C, then a=AR=R,-R,

Hence, the temperature-coefficient of a material may be defined as :
the increase in resistance per ohm original resistance per °C rise in temperature.
From Eq. (i), we find that R, = R, (1 + o ?) ...(i)

*  Ina.c. circuits, it has a slightly different meaning.
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It should be remembered that the /
above equation holds good for both rise
as well as fall in temperature. As tem-
perature of a conductor is decreased,
its resistance is also decreased. In Fig.
1.6 is shown the temperature/resistance
graph for copper and is practically a / %
straight line. If this line is extended ﬂ‘fl//{r R,
backwards, it would cut the tempera- A
ture axis at a point where temperature s
is —234.5°C (a number quite easy to -2345°C 0 t
remember). It means that theoretically, -t°C -=— — t°C
the resistance of copper conductor will Fig. 1.6
become zero at this point though as
shown by solid line, in practice, the curve departs from a straight line at very low temperatures.
From the two similar triangles of Fig. 1.6 it is seen that :

R _ 1+2345 _(1+ t )
R, ~— 2345 \ 2345

Resistance

t
R, = R, (1 + m) or R, =R, (1 + o t) where oe = 1/234.5 for copper.

t

1.11. Value of o at Different Temperatures

So far we did not make any distinction between values of a at different temperatures. But it is
found that value of o itself is not constant but depends on the initial temperature on which the
increment in resistance is based. When the increment is based on the resistance measured at 0°C,
then o has the value of o, At any other initial temperature #°C, value of o is o, and so on. It should
be remembered that, for any conductor, o, has the maximum value.

Suppose a conductor of resistance R, at 0°C (point 4 in Fig. 1.7) is heated to °C (point B). Its
resistance R, after heating is given by

R, = Ry(1+040) (D)
where ) is the temperature-coefficient at 0°C.

Now, suppose that we have a conductor of resistance R, at temperature °C. Let
R, t°C—B this conductor be cooled from #°C to 0°C. Obviously, now the initial point is B
B and the final point is 4. The final resistance R, is given in terms of the initial
— resistance by the following equation
B Ry = R [1+0o(-=0]=R,(1-0.1) (i)
on - . R —R
g g From Eq. (ii) above, we have o,= —-—2
5] — = R, Xt
S | =
- Substituting the value of R, from Eq. (i), we get
B o= Polroh =Ry o % G
i Ry(d+o,H)xt 1404t l+oy ¢
Ry, 0°C——A In general, let o= tempt. coeff. at #,°C ; o, = tempt. coeff. at £,°C.
Then from Eq. (iii) above, we get

Fig. 1.7
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(0} I+o,t
o= 0 o Lo 0 b
I+o ¢ o, O
. 1 l+oyt,
Similarly, v Ta
2 0

Subtracting one from the other, we get

OLLZ—O% = (t,~t,) or ocLz = all +(t,~t)ora, = m
Values of o for copper at different temperatures are given in Table No. 1.3.
Table 1.3. Different values of o for copper
Tempt. in °C 0 5 10 20 30 40 50

o 0.00427  0.00418  0.00409 0.00393  0.00378 0.00364 0.00352

In view of the dependence of o on the initial temperature, we may define the temperature
coefficient of resistance at a given temperature as the charge in resistance per ohm per degree
centigrade change in temperature from the given temperature.

In case R, is not given, the relation between the known resistance R, at ¢,°C and the unknown
resistance R, at £,°C can be found as follows :

R, = Ry(1+0yt,) and R,=R,(1+0yt)

R, 1+ oty

?1 = —1+0c0t1 (1)
The above expression can be simplified by a little approximation as follows :
R
= = (o) (+or)
1
= (1 +o0yt) (1 -0 t)) [Using Binomial Theorem for expansion and
= 1+0,(t,—1) neglecting squares and higher powers of (¢ ¢,)]
R, = R, [l +04(t —1)] [Neglecting product (%ztltz)]

For more accurate calculations, Eq. (iv) should, however, be used.

1.12. Variations of Resistivity with Temperature

Not only resistance but specific
resistance or resistivity of metallic
conductors also increases with rise

in temperature and vice-versa. \)z?b

As seen from Fig. 1.8 the :
resistivities of metals vary linearly g
with temperature over a significant f
range of temperature-the variation /

becoming non-linear both at very
high and at very low temperatures. |
Let, for any metallic conductor, 200 0 200 400

p, = resistivity at#,°C

I

Fig. 1.8
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p, = resistivity at#,°C

m = Slope of the linear part of the curve
Then, it is seen that

m = P2Pi
=4

m
or p, = p,+tm(t,—t) or 2 1 _l(tz )

The ratio of m/p | is called the temperature coefficient of resistivity at temperature #,°C. It may
be defined as numerically equal to the fractional change in p | per °C change in the temperature from
t,°C. It is almost equal to the temperature-coefficient of resistance o,. Hence, putting o, = m/p |,
we get

p,=p,[1+0y ()] or simplyasp,=p,(l+ o)

Note. It has been found that although temperature is the most significant factor influencing the resistivity
of metals, other factors like pressure and tension also affect resistivity to some extent. For most metals except
lithium and calcium, increase in pressure leads to decrease in resistivity. However, resistivity increases with
increase in tension.

Example 1.11. A copper conductor has its specific resistance of 1.6 X 1 0% ohm-cm at 0°C and
a resistance temperature coefficient of 1/254.5 per °C at 20°C. Find (i) the specific resistance and

(ii) the resistance - temperature coefficient at 60°C. (F.Y. Engg. Pune Univ. Nov.)
. ®g 1 %y 1 o
. — = R = C
Solution %0 T THo,x20 ' 2545 T+opx20 072345
(i) Peo = Poll+0yx 60)=1.6x 10° (1 +60/234.5)=2.01x 10° Q-cm
) o 1/234.5 1 .
— = = C
(if) %o = T+ayx60 1+(60/234.5) 29450

Example 1.12. 4 platinum coil has a resistance of 3.146 Q at 40°C and 3.767 Qat 100°C. Find
the resistance at 0°C and the temperature-coefficient of resistance at 40°C.

(Electrical Science-II, Allahabad Univ.)
Solution. R0 = Ry (1+100 o) ..()
R,y = Ry (1+400q,) (i)

3.767 1+100 o,

3146 1+40 o or 0,=0.00379 or 1/264 per°C

From (i), we have 3.767 = R, (1 +100 x 0.00379) .. R,=2.732Q

o 0.00379 1
_ = = L percc
Now, %o = 11400, 1+40x0.00379 304 P

Example 1.13. A potential difference of 250 V is applied to a field winding at 15°C and the
current is 5 A. What will be the mean temperature of the winding when current has fallen to 3.91 4,
applied voltage being constant. Assume oy 5= 1/254.5. (Elect. Engg. Pune Univ.)

Solution. Let R, = winding resistance at 15°C; R, = winding resistance at unknown mean tem-

perature 7,°C.
: R, = 250/5=50€ R, =250/3.91 = 63.94 Q.

Now = + 1
R R [1+a,(—t s 63.94 = +—t (-
0 2 ul 15 (G =1))] 50 [1 7545 (t, 15):|

86°C
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Example 1.14. Two coils connected in series have resistances of 600 Q and 300 Q with tempt.
coeff- of 0.1% and 0.4% respectively at 20°C. Find the resistance of the combination at a tempt. of
50°C. What is the effective tempt. coeff. of combination ?

Solution. Resistance of 600 Q resistor at 50°C is = 600 [1 + 0.001 (50 —20)] =618 Q

Similarly, resistance of 300 Q resistor at 50°C is = 300 [1 + 0.004 (50 —20)] =336 Q

Hence, total resistance of combination at 50°C is = 618 + 336 = 954 Q

Let [ = resistance-temperature coefficient at 20°C

Now, combination resistance at 20°C = 900 Q

Combination resistance at 50°C = 954 Q

954 =900 1 +B (50-20)] .. B=0.002

Example 1.15. Tiwo wires A and B are connected in series at 0°C and resistance of B is 3.5 times
that of A. The resistance temperature coefficient of A is 0.4% and that of the combination is 0.1%. Find
the resistance temperature coefficient of B. (Elect. Technology, Hyderabad Univ.)

Solution. A simple technique which gives quick results in such questions is illustrated by the
diagram of Fig. 1.9. It is seen that R,/R , = 0.003/(0.001 —cr)

A B
0.004 o or 3.5 = 0.003/(0.001 —ov)
or o = 0.000143°C*  or 0.0143 %
Example 1.16. Two materials A and B have A B
0.001 resistance temperature coefficients of 0.004 and (.04 0.0004
0.0004 respectively at a given temperature. In what
/ \ proportion must A and B be joined in series to pro- \ /
duce a circuit having a temperature coefficient of
0.001—0)  0.003 0.001? 0.001
Fig. 1.9 (Elect. Technology, Indore Univ.)
Solution. Let R, and R be the resistances of the two wires of materials
A and B which are to be connected in series. Their ratio may be found by the  0.0006 0.003
simple technique shown in Fig. 1.10.

; 0.003 Fig. 1.10

=5
R, 0.0006
Hence, Rz must be 5 times R,.

Example 1.17. A resistor of 80 Q resistance, having a temperature coefficient of 0.0021 per
degree C is to be constructed. Wires of two materials of suitable A B
cross-sectional area are available. For material A, the resistanceis = WW\—>—"\W\—>—
80 ohm per 100 metres and the temperature coefficient is 0.003 per
degree C. For material B, the corresponding figures are 60 ohm
per metre and 0.0015 per degree C. Calculate suitable lengths of
wires of materials A and B to be connected in series to constructthe '———eo y o———
required resistor. All data are referred to the same temperature.

Solution. Let R, and R, be the resistances of suitable lengths of materials 4 and B respectively
which when joined in series will have a combined temperature coeff. of 0.0021. Hence, combination
resistance at any given temperature is (R, + R,). Suppose we heat these materials through #°C.

When heated, resistance of 4 increases from R to R (1 +0.003 #). Similarly, resistance of B
increases from R, to R, (1 +0.0015 7).

combination resistance after being heated through °C
= R,(1+0.0037)+R,(1+0.00157)
The combination o being given, value of combination resistance can be also found directly as
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(R, +R,) (1+0.0021 1)

(R,+R,) (1+0.0021) = R, (1+0.0037)+R, (1+0.0015 7)

R
Simplifying the above, we get R_b = % ..(D)
Now R,+R, =80 Q ..(i)
Substituting the value of R, from (i) into (ii) we get

Ra+%Ra =80 or R,=32Q and R, =48Q

If L and L, are the required lengths in metres, then
L, = (100/80)x 32=40m and L,=(100/60)x 48=80m

Example 1.18. A coil has a resistance of 18 Q when its mean temperature is 20°C and of 20 €
when its mean temperature is 50°C. Find its mean temperature rise when its resistance is 21 Q and

the surrounding temperature is 15° C. (Elect. Technology, Allahabad Univ.)
Solution. Let R, be the resistance of the coil and o its tempt. coefficient at 0°C.
Then, 18 = Ry(1+0yx 20) and 20=R;(1+50 o)
Dividing one by the other, we get
20 1+50 0, 1 o
—_— = — SOy = —= C
I8 1+200, 07250 P

If £°C is the temperature of the coil when its resistance is 21 € then,
21 = R, (1 +1/250)
Dividing this equation by the above equation, we have
21 _ KA i250) ot emp. rise = 65 —15 = 50°C
18 R, (1+200,)° ’ '
Example 1.19. The coil of a relay takes a current of 0.12 A when it is at the room temperature
of 15°C and connected across a 60-V supply. If the minimum operating current of the relay is 0.1 4,
calculate the temperature above which the relay will fail to operate when connected to the same
supply. Resistance-temperature coefficient of the coil material is 0.0043 per°C at 6°C.

Solution. Resistance of the relay coil at 15°C is R, = 60/0.12 = 500 €

Let #°C be the temperature at which the minimum operating current of 0.1 A flows in the relay
coil. Then, R, = 60/0.1 = 600 €

Now Ris = Ry(1+150ap) =R, (1+15% 0.0043) and R,=R,(1+0.0043 7)
R 14000431 600 _1+0.00431  esaoc
Rs ~  1.0654 500 1.0645 r= s

If the temperature rises above this value, then due to increase in resistance, the relay coil will
draw a current less than 0.1 A and, therefore, will fail to operate.

Example 1.20. Two conductors, one of copper and the other of iron, are connected in parallel
and carry equal currents at 25°C. What proportion of current will pass through each if the tempera-
ture is raised to 100°C ? The temperature coefficients of resistance at 0°C are 0.0043/°C and 0.0063/
°C for copper and iron respectively. (Principles of Elect. Engg. Delhi Univ.)

Solution. Since the copper and iron conductors carry equal currents at 25°C, their resistances
are the same at that temperature. Let each be R ohm.

For copper, R = Ry =R[1+0.0043 (100 -25)] =1.3225 R

For iron, Ry = R,=R[1+0.0063 (100 -25)] =1.4725 R

If 7 is the current at 100°C, then as per current divider rule, current in the copper conductor is



16 Electrical Technology

R, 1.4725 R
R +R, "~ 1.3225R+1.4725R
R, -7 1.3225R
R +R, 2.795 R
Hence, copper conductor will carry 52.68% of the total current and iron conductor will carry the
balance i.e. 47.32%.

Example 1.21. The filament of a 240 V metal-filament lamp is to be constructed from a wire
having a diameter of 0.02 mm and a resistivity at 20°C of 4.3 Q-cm. If o. = 0.005/°C, what length
of filament is necessary if the lamp is to dissipate 60 watts at a filament tempt. of 2420°C ?

=0.5268 1

I =1

L =1 =047321

Solution. Electric power generated = I R watts = V'*/R watts
VIR = 60 or 240/R=60

240 % 240
Resistance at 2420°C ~ R,,,, = 60 =960 Q
Now Rypno = Ry [1+(2420-20) x 0.005]
or 960 = R,, (1 +12)
R,, = 960/13 Q

0.002)*
Now Py = 43X 10°Qem and 4= % cm?

AXRyy _ 1(0.002)° x 960
P 4x13x43x107°

[ = =54 cm

Example 1.22. A semi-circular ring of copper has an inner
radius 6 cm, radial thickness 3 cm and an axial thickness 4 cm.
Find the resistance of the ring at 50°C between its two end-faces.
Assume specific resistance of Cu at 20°C = 1.724 x 1 0% ohm-cm
and resistance tempt. coeff. of Cu at 0°C = 0.0043/°C.

Solution. The semi-circular ring is shown in Fig. 1.11.
Mean radius of ring =(6+9)/2=75cm
Mean length between end faces = 7.5 © cm = 23.56 cm
Cross-section of the ring = 3x 4=12cm’

- o o _ 00043 _
Now oy = 0.0043/°C; 050 = T30~ 0.00a5 = 000396

Pso = Paoll 04 (50 —20)]
=1.724x 10° (1 +30 x 0.00396)=1.93 x 10° Q-cm
Pso X! _1.93x107°x23.56 _

R, = = 3.79%x107°
5 v > 3.79x107° Q

Fig.1.11

Tutorial Problems No. 1.2

1. It is found that the resistance of a coil of wire increases from 40 ohm at 15°C to 50 ohm at 60°C.
Calculate the resistance temperature coefficient at 0°C of the conductor material.

[1/165 per °C] (Elect. Technology, Indore Univ.)

2. A tungsten lamp filament has a temperature of 2,050°C and a resistance of 500 Q when taking normal

working current. Calculate the resistance of the filament when it has a temperature of 25°C. Tem-

perature coefficient at 0°C is 0.005/°C. [50 Q] (Elect. Technology, Indore Univ.)
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An armature has a resistance of 0.2 Q at 150°C and the armature Cu loss is to be limited to 600 watts
with a temperature rise of 55°C. If o, for Cu is 0.0043/°C, what is the maximum current that can be
passed through the armature ? [50.8 A]
A d.c. shunt motor after running for several hours on constant voltage mains of 400 V takes a field
current of 1.6 A. If the temperature rise is known to be 40°C, what value of extra circuit resistance is
required to adjust the field current to 1.6 A when starting from cold at 20°C ? Temperature coefficient
=0.0043/°C at 20°C. [36.69 Q]
In a test to determine the resistance of a single-core cable, an applied voltage of 2.5 V was necessary
to produce a current of 2 A in it at 15°C.
(a) Calculate the cable resistance at 55°C if the temperature coefficient of resistance of copper at
0°C is 1/235 per°C.
(b) Ifthe cable under working conditions carries a current of 10 A at this temperature, calculate the
power dissipated in the cable. [(a) 1.45 Q (b) 145 W]
An electric radiator is required to dissipate 1 kW when connected to a 230 V supply. Ifthe coils of the
radiator are of wire 0.5 mm in diameter having resistivity of 60 L Q-cm, calculate the necessary length
of the wire. [1732 cm]
An electric heating element to dissipate 450 watts on 250 V mains is to be made from nichrome ribbon
of width 1 mm and thickness 0.05 mm. Calculate the length of the ribbon required (the resistivity of
nichrome is 110 x 10® Q-m). [631 m]
When burning normally, the temperature of the filament in a 230 V, 150 W gas-filled tungsten lamp is
2,750°C. Assuming a room temperature of 16°C, calculate (a) the normal current taken by the lamp
(b) the current taken at the moment of switching on. Temperature coefficient of tungsten is 0.0047
Q/Q°C at 0°C. [(@) 0.652 A (b) 8.45 A] (Elect. Engg. Madras Univ.)
An aluminium wire 5 m long and 2 mm diameter is connected in parallel with a wire 3 m long. The
total current is 4 A and that in the aluminium wire is 2.5 A. Find the diameter of the copper wire. The
respective resistivities of copper and aluminium are 1.7 and 2.6 p€-m. [0.97 mm]
The field winding of d.c. motor connected across 230 V supply takes 1.15 A at room temp. of 20°C.
After working for some hours the current falls to 0.26 A, the supply voltage remaining constant.
Calculate the final working temperature of field winding. Resistance temperature coefficient of cop-
per at 20°C is 1/254.5. [70.4°C] (Elect. Engg. Pune Univ.)
It is required to construct a resistance of 100 € having a temperature coefficient of 0.001 per°C.
Wires of two materials of suitable cross-sectional area are available. For material A, the resistance
is 97 Q per 100 metres and for material B, the resistance is 40 Q per 100 metres. The temperature
coefficient of resistance for material 4 is 0.003 per °C and for material B is 0.0005 per °C. Deter-
mine suitable lengths of wires of materials 4 and B. [A:19.4 m, B : 200 m]
The resistance of the shunt winding of a d.c. machine is measured before and after a run of several
hours. The average values are 55 ohms and 63 ohms. Calculate the rise in temperature of the
winding. (Temperature coefficient of resistance of copper is 0.00428 ohm per ohm per °C).
[36°C] (London Univ.)
A piece of resistance wire, 15.6 m long and of cross-sectional area 12 mm” at a temperature of 0°C,
passes a current of 7.9 A when connected to d.c. supply at 240 V. Calculate (a) resistivity of the wire
(b) the current which will flow when the temperature rises to 55°C. The temperature coefficient of the
resistance wire is 0.00029 Q/Q/°C. [(@) 23.37 nQm (b) 7.78 A] (London Univ.)
A coil is connected to a constant d.c. supply of 100 V. At start, when it was at the room temperature
0f'25°C, it drew a current of 13 A. After sometime, its temperature was 70°C and the current reduced
to 8.5 A. Find the current it will draw when its temperature increases further to 80°C. Also, find the
temperature coefficient of resistance of the coil material at 25°C.
[7.9 A; 0.01176°C™'] (F.Y. Engg. Univ.)
The resistance of the filed coils with copper conductors of a dynamo is 120 Q at 25°C. After working
for 6 hours on full load, the resistance of the coil increases to 140 (. Calculate the mean temperature
rise of the field coil. Take the temperature coefficient of the conductor material as 0.0042 at 0°C.
[43.8°C] (Elements of Elec. Engg. Banglore Univ.)
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1.13. Ohm’s Law

This law applies to electric to electric conduction through good conductors and may be stated
as follows :
The ratio of potential difference (V) between any two points on a conductor to the current (1)
flowing between them, is constant, provided the temperature of the conductor does not change.
|4

In other words, % = constant or 7 =R

where R is the resistance of the conductor between the two points considered.

Put in another way, it simply means that provided R is kept constant, current is directly propor-
tional to the potential difference across the ends of a conductor. However, this linear relationship
between V and I does not apply to all non-metallic conductors. For example, for silicon carbide, the
relationship is given by V= KI" where K and m are constants and m is less than unity. It also does not
apply to non-linear devices such as Zener diodes and voltage-regulator (VR) tubes.

Example 1.23. A4 coil of copper wire has resistance of D Q at 20°C and is connected to a 230-
V supply. By how much must the voltage be increased in order to maintain the current consant if the
temperature of the coil rises to 60°C ? Take the temperature coefficient of resistance of copper as
0.00428 from 0°C.
Solution. As seen from Art. 1.10
Ry, 1+ 60x0.00428

RZO = m '.'RGO =90 x 1.2568/1.0856 = 104.2 Q

Now, current at 20°C = 230/90 =23/9 A
Since the wire resistance has become 104.2 Q at 60°C, the new voltage required for keeping the
current constant at its previous value = 104.2 x 23/9=266.3 V

increase in voltage required = 266.3 —230 =36.3 V R R Ry

Example 1.24. Three resistors are connected in series across a
12-V battery. The first resistor has a value of 1 € second has a

voltage drop of 4 V and the third has a power dissipation of 12 W. M 1y
Calculate the value of the circuit current.
Solution. Let the two unknown resistors be R, and R, and / the O VG
circuit current
PR -1 _ 4 . R~ 2R Ao, 1=
3= and IRy = 4 . Ry= 4% ) R,
Now, I(1+R,+Ry) = 12
Substituting the values of 7 and R,, we get

4 3R2 2
R2(1+R2+4R2) =12 or 3R, -8R,+4=0

8+ /64— 48
R, = — < s Ry=2Q  or %Q
2
3,0 30 302V 1
R3 = ZRlzz—sz =3Q or 2(5)12—59
= —— I:—:
L= s 2A =i amy+a) oA

1.14. Resistance in Series

When some conductors having resistances R,, R, and R, etc. are joined end-on-end as in Fig.
1.12, they are said to be connected in series. It can be proved that the equivalent resistance or total
resistance between points 4 and D is equal to the sum of the three individual resistances. Being a
series circuit, it should be remembered that (i) current is the same through all the three conductors
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(ii) but voltage drop across each is different due to its different resistance and is given by Ohm’s Law
and (iii) sum of the three voltage drops is equal to the voltage applied across the three conductors.
There is a progressive fall in potential as we go from point 4 to D as shown in Fig. 1.13.

4 R B R ¢ R p A

Al T C

o =~
[sv]

N

°
~
®

Fig. 1.12 Fig. 1.13
- V=V +V,+V;=IR + IR, + IR, —Ohm’s Law
But V = IR
where R is the equivalent resistance of the series combination.
IR = IR, +IR,+IR; or R=R,+R,+R,
1 1 1 1
Also e 61 + G_2 + 63
As seen from above, the main characteristics of a series circuit are :
1. same current flows through all parts of the circuit.
2. different resistors have their individual voltage drops.
3. voltage drops are additive.
4. applied voltage equals the sum of different voltage drops.
5. resistances are additive.
6. powers are additive.

1.15. Voltage Divider Rule

Since in a series circuit, same current flows through each of the R 32 ¥
given resistors, voltage drop varies directly with its resistance. In !
Fig. 1.14 is shown a 24-V battery connected across a series combina- B
tion of three resistors. 1 R, 24

C
6

Total resistance R =R +R,+R;=12Q 24V

According to Voltage Divider Rule, various voltage drops are :

R 2 R
V. —Ll=24x=2=4V 3
12

Vi

v, = V.

|

24x A gy
12 Fig.1.14

s _uxb oy
R 1

=

v, =V

1.16. Resistances in Parallel L

Three resistances, as joined in Fig. 1.15 are said to be connected
in parallel. In this case (i) p.d. across all resistances is the same A/ A
(i) current in each resistor is different and is given by Ohm’s
Law and (iii) the total current is the sum of the three separate oV e
currents. Fig.1.15
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|/ 4
=+ +[=——+—+—
I =1 +L+1 R® R
Now, I = % where Vis the applied voltage.
R = equivalent resistance of the parallel combination.
Vv vV vV Vv 1_1 1 1
y _¥Yr, v,V =t
R R R R o R R R R
Also G = G +G,+ G,

The main characteristics of a parallel circuit are :
same voltage acts across all parts of the circuit
different resistors have their individual current.
branch currents are additive.

conductances are additive.

0o 0 =

powers are additive.

Example 1.25. What is the value of the unknown resistor R in Fig. 1.16 if the voltage drop across
the 500 Qresistor is 2.5 volts ? All resistances are in ohm. (Elect. Technology, Indore Univ.)

550 50 7 550 50
A —MW—0—— A

12V Ré 500§

Fig. 1.16

Solution. By direct proportion, drop on 50 Q resistance =2.5 x 50/500=0.25V
Drop across CMD or CD =25+025=275V
Drop across 550 Q resistance = 12 -2.75=925V
I = 9.25/550=0.0168 A, I, =2.5/500 = 0.005 A
1, = 0.0168 —0.005 = 0.0118 A
0.0118 = 2.75/R; R=1233 Q

Example 1.26. Calculate the effective resistance of the following combination of resistances
and the voltage drop across each resistance when a P.D. of 60 V is applied between points A and B.

Solution. Resistance between 4 and C (Fig. 1.17).

- 63=20Q ;
Resistance of branch ACD = 18 +2=20Q y c 18 p & p
o— —e—\VW—o0
Now, there are two parallel paths between points A
and D of resistances 20 Q and 5 Q
Hence, resistance between 4 and D =20 5=4 Q S
~.Resistance between 4 and B=4 +8 =12 Q A
Total circuit current = 60/12 =5 A Fig. 117
Current through 5 Q resistance = 5X 2044 —Art. 1.25

25
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Current in branch ACD = 5X % =1A

P.D. across 3 Qand 6 Qresistors=1x 2=2V
P.D. across 18 Q resistors = 1x 18=18V
P.D. across 5 Qresistors =4 x 5=20V

P.D. across 8 Qresistors = 5x 8=40V

Example 1.27. A circuit consists of four 100-W lamps connected in parallel across a 230-V
supply. Inadvertently, a voltmeter has been connected 1500 Q

in series with the lamps. The resistance of the voltmeter @)
is 1500 Q and that of the lamps under the conditions Voltmeter

stated is six times their value then burning normally.

What will be the reading of the voltmeter ? 230V
Solution. The circuit is shown in Fig. 1.18. The J
wattage of a lamp is given by : Lamp
W = FR=VIR - Load
100 = 230%R .. R=529 Q Fig.1.18

Resistance of each lamp under stated condition is =6 X 529 =3174 Q
Equivalent resistance of these four lamps connected in parallel = 3174/4 = 793.5 Q
This resistance is connected in series with the voltmeter of 1500 Q resistance.
..total circuit resistance = 1500 + 793.5 = 2293.5 Q
circuit current = 230/2293.5 A
According to Ohm’s law, voltage drop across the voltmeter = 1500 x 230/2293.5=150V (approx)

Example 1.28. Determine the value of R and current through it in Fig. 1.19, if current through
branch AQO is zero. (Elect. Engg. & Electronics, Bangalore Univ.)

Solution. The given circuit can be redrawn as shown in Fig. 1.19 (b). As seen, it is nothing else
but Wheatstone bridge circuit. As is well-known, when current through branch 4O becomes zero, the
bridge is said to be balanced. In that case, products of the resistances of opposite arms of the bridge
become equal.

: 4x 15 = RX 1;R=6Q

A /A\
1 1. 1 1.5
SRS . 7>
B X C BRY yoC
M 4 R
0
0 () ()
W
v 2 v 2
) ©
Fig.1.19

Under condition of balance, it makes no difference if resistance X is removed thereby giving us
the circuit of Fig. 1.19 (¢). Now, there are two parallel paths between points B and C of resistances
(1+15)=25Qand (4+6)=10Q2 Ry-=1025=2Q

Total circuit resistance =2 + 2 =4 Q. Total circuit current = 10/4 =2.5 4

This current gets divided into two parts at point B. Current through R is

y = 25%25/125=05A
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Example 1.29. In the unbalanced bridge circuit of Fig. 1.20 (a), find the potential difference
that exists across the open switch S. Also, find the current which will flow through the switch when
it is closed.

Solution. With switch open, there are two parallel branches across the 15-V supply. Branch
ABC has aresistance of (3 + 12) = 15 Q and branch ABC has a resistance of (6 +4) =10 £ Obviously,
each branch has 15 V applied across it.

Ve = 12X 15/15=12V; V,=4x 15/(6 +4)=6V
p.d. across points Band D = V-V, =12-6=6V

When S is closed, the circuit becomes as shown in Fig. 1.20 (b) where points B and D become
electrically connected together.

Rp,=3]6=2Q and Rp.=4|12=3Q

R, =2+3=5Q ; I=15/5=3 A
A
6 3
&+
15V D o B
ol
4 12
C C
(a) (b)

Fig. 1.20

Current through arm AB =3 x 6/9 =2 A. The voltage drop overarm AB =3 X 2=6 V. Hence,
drop over arm BC =15 -6 =9 V. Current through BC =9/12 =0.75 A. It is obvious that at point
B, the incoming current is 2 A, out of which 0.75 A flows along BC, whereas remaining 2 —0.75 =
1.25 A passes through the switch.

As a check, it may be noted that current through AD = 6/6 = 1 A. At point D, this current is
joined by 1.25 A coming through the switch. Hence, current through DC=1.25+1=2.25 A. This
fact can be further verified by the fact that there is a voltage drop of 9 V across 4 Q resistor thereby
giving a current of 9/4 =2.25 A.

Example 1.30. A4 50-ohm resistor is in parallel with 100-ohm resistor. Current in 50-ohm
resistoris 7.2 A. How will you add a third resistor and what will be its value of the line-current is to
be its value if the line-current is to be 12.1 amp ? [Nagpur Univ., Nov. 1997]

Solution. Source voltage =50x 7.2=360V, Current through 100—ohm resistor =3.6 A
Total current through these two resistors in parallel = 10.8 A

For the total line current to be 12.1 A, third resistor must be connected in parallel, as the third
branch, for carrying (12.1 —10.8) = 1.3 A. If R is this resistor R = 360/1.3 =277 ohms

Example 1.31. In the circuit shown in Fig. 1.21, C
calculate the value of the unknown resistance R and
the current flowing through it when the current in
branch OC is zero.

[Nagpur Univ., April 1996]

Solution. If current through R-ohm resistor is /
amp, A0 branch carries the same current, since, current
through the branch CO is zero. This also means that
the nodes C and O are at the equal potential. Then, £
equating voltage-drops, we have V,, =V ..

This means branch AC carries a current of 4/.
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This is current of 4 7 also flows through the branch CB. Equating the voltage-drops in branches
OB and CB,

1.5x 4I=R I, giving R=6Q

Atnode 4, applying KCL, a current of 5 / flows through the branch BA from B to A. Applying KVL
around the loop BAOB, I =0.5 Amp.

Example 1.32. Find the values of R and V _ in Fig.
1.22. Also find the power supplied by the source.

[Nagpur University, April 1998]

Solution. Name the nodes as marked on Fig. 1.22.
Treatnode A as the reference node, so that V, = 0. Since
path ADC carries 1 A with a total of 4 ohms resistance,
Ve=+4V.

Since V., +4, 1., =4/8 = 0.5 amp from C to 4.
Applying KCL atnode C, Iy =1.5 A from B to C.
Along the path BA4, 1 A flows through 7—ohm resistor.

Ve=+7TVolts. Vp.=T7—-4=+3.

This drives a current of 1.5 amp, through R ohms. Thus R =3/1.5 =2 ohms.

Applying KCL at node B, I, = 2.5 A from F to B.

Vg =2 X 2.5=35 volts, I being higher than B from the view-point of Potential. Since V' has
already been evaluated as + 7 volts, V' + 12 volts (w.r. to 4). Thus, the source voltage V =12 volts.

Example 1.33. In Fig. 1.23 (a), if all the resistances are of 6 ohms, calculate the equivalent resis-
tance between any two diagonal points. [Nagpur Univ. April 1998]

Fig. 1.22

60 Q 2Q

Q X 6Q

6Q Q
A A
AV
P 6 Q Y P Y 6Q

Fig. 1.23 (a) Fig. 1.23 (b) Fig. 1.23 (0)

Solution. If X-Y are treated as the concerned diagonal points, for evaluating equivalent resis-
tance offered by the circuit, there are two ways of transforming this circuit, as discussed below :

Method 1 : Delta to Star conversion applicable to the delta of PQY introducing an additional
node N as the star-point. Delta with 6 ohms at each side is converted as 2 ohms as each leg of the
star-equivalent. This is shown in Fig. 1.23 (b), which is further simplified in Fig. 1.23 (c). After
handling series-parallel combinations of resistances,

X Q
Q
18Q 18Q
18Q 60 5%
18 G AMAA Y
% X

. = 6Q
ANVWA
Y 18Q
«—— Rxy——
Fig. 1.23 (d) Fig. 1.23 (e)

Total resistance between X and Y terminals in Fig. 1.23 (c¢) comes out to be 3 ohms.
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Method 2 : Star to Delta conversion with P as the star-point and XYQ to be the three points of
concerned converted delta. With star-elements of 6 ohms each, equivalent delta-elements will be 18
ohms, as Fig. 1.23 (d). This is included while redrawing the circuit as in Fig. 1.23 (e).

After simplifying, the series-parallel combination results into the final answer as R, = 3 ohms.

Example 1.34. For the given circuit find the current
1, and I [Bombay Univ. 1991]

Solution. Nodes 4, B, C, D and reference node
0 are marked on the same diagram.

1, and I are to be found.

Apply KCL atnode A. From C'to 4, current="7

+1,

Atnode 0, KCL is applied, which gives a current
of 7+ 1 through the 7 volt voltage source. Applying
KCL at node B gives a current /, —/, through 2-ohm
resistor in branch CB. Finally, at node 4, KCL is ap-
plied. This gives a current of 7 + I through 1-ohm

resistor in branch CA. e
Around the Loop OCBO, 2 (I, —1,) +1.1,=17
Around the Loop CABC, 1 (7+ 1) +31,-2(,—1,)=0
After rearranging the terms, 3/, -2 1,=7, 21, +61,=-7
This gives I, = 2amp, I, =-0.5 amp.
This means that 7 is 0.5 amp from B to A.
Example 1.35. Find R, in the circuit, given in Fig. 1.25. [Bombay Univ. 2001]
PSR VYYVA AV
2Q 15Q
B 10 Q
8Q
G
F=20Q 10 Q
30  p 40 Q
Fig. 1.25 (a)

Solution. Mark additional nodes on the diagram, C, D, F, G, as shown. Redraw the figure as in
1.25 (b), and simplify the circuit, to evaluate R, ;, which comes out to be 22.5 ohms.

250 50 Q

2Q C.D
AO AV 2
50 Q
B 8Q
O ANVWA F.G

Fig. 1.25 (b)
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Example 1.36. Find current through 4 resistance. [Bombay Univ. 2001]

Fig. 1.26

Solution. Simplifying the series-parallel combinations, and solving the circuit, the source cur-
rent is 10 amp. With respect to 0, V, = 40, V, = 40 —16 = 24 volts.

I, = 4 amp, hence I, = 6 amp
Ve = Vy=I,x 1.6 =24-9.6 = 14.4 volts
1 14.4/4 = 3.6 amp, which is the required answer. Further 7, =24 amp.

8 Q 8Q 8Q
. DA ’ AW

— 24V = 24 —
= = 24V = %40 <60 %

& AMN A

120 12Q 12Q
Fig. 1.27 Fig. 1.28 Fig. 1.29

Tutorial Problems No. 1.3

1. Find the current supplied by the battery in the circuit of Fig. 1.27. [5 A]
2. Compute total circuit resistance and battery current 6

in Fig. 1.28. [8/3 Q9 A] D)
3. Calculate battery current and equivalent resistance A4 O AN

of the network shown in Fig. 1.29. [15 A; 8/5 Q) I—\/\/\/\/—l
4. Find the equivalent resistance of the network of Fig. 3 4

1.30 between terminals A and B. All resistance values

. 6

are in ohms. [6 Q] %
5. What is the equivalent resistance of the circuit of

Fig. 1.31 between terminals 4 and B ? All resis-

tances are in ohms. 4Q Bo
6. Compute the value of battery current / in Fig. 1.32.

All resistances are in ohm. [6 A] Fig. 1.30

6
4o ANV

Yy~
o

4 | 4

— v 4 §
T

2 2
Bo AN - AN

Fig. 1.31 Fig. 1.32
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10.

11.

12.

13.

14.

15.

Electrical Technology

Calculate the value of current / supplied by the voltage source in Fig. 1.33. All resistance values are

in ohms. (Hint : Voltage across each resistor is 6 V) [1 A]
Compute the equivalent resistance of the circuit of Fig. 1.34 (a) between points (i) ab (ii) ac and
(iii) be. All resistances values are in ohm. [(i) 6 Q (ii) 4.5 Q (iii) 4.5 Q
12 8
! a__ b i
3 8
(Dev 22 3% SACD 63 54 12§
2 2
AMM z AN
Fig. 1.33 Fig. 1.34 Fig. 1.35

In the circuit of Fig. 1.35, find the resistance between terminals 4 and B when switch is
(a) open and (b) closed. Why are the two values equal ? [(@)2Q(b)2Q
The total current drawn by a circuit consisting of three resistors connected in parallel is 12 A.
The voltage drop across the first resistor is 12 V, the value of second resistor is 3 Q and the
power dissipation of the third resistor is 24 W. What are the resistances of the first and third
resistors ? [2Q; 6Q]
Three parallel connected resistors when connected across a d.c. voltage source dissipate a total
power of 72 W. The total current drawn is 6 A, the current flowing through the first resistor is
3 A and the second and third resistors have equal value. What are the resistances of the three
resistors ? [4 € 8 8 Q)
A bulb rated 110 V, 60 watts is connected with another bulb rated 110-V, 100 W across a
220 V mains. Calculate the resistance which should be joined in parallel with the first bulb so

that both the bulbs may take their rated power. [302.5 Q]
Two coils connected in parallel across 100 V supply mains take 10 A from the line. The power
dissipated in one coil is 600 W. What is the resistance of the other coil ? [25 Q]

An electric lamp whose resistance, when in use, is 2 Q is connected to the terminals of a dry
cell whose e.m.f. is 1.5 V. If the current through the lamp is 0.5 A, calculate the internal
resistance of the cell and the potential difference between the terminals of the lamp. If two
such cells are connected in parallel, find the resistance which must be connected in series with
the arrangement to keep the current the same as before.

[1Q;1V;0.5Q] (Elect. Technology, Indore Univ.)

Determine the current by the source in the circuit shown below. (Bombay Univ. 2001)
SA
5Q D
AW £ &
10V 30 § gg Q § 10
8V
+
C B
Fig. 1.36. (a)

Hint. Series-parallel combinations of resistors have to be dealt with. This leads to the source
current of 28.463 amp.
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16. Find the voltage of point 4 with respect to point B in the Fig. 1.36 (). Is it positive with respect to B ?
(Bombay University, 2000)

5A
5Q D
ANWN A
10V _—_— 39% 30 40
8V
X _
C B
Fig. 1.36 (b)
Hint. If V, = 0,V.=-125x 3=-375V
Vp = =375-8=~-1175V
Ve = Vp+15=+3.25volts

Thus, the potential of point 4 with respect to B is —=3.25 V.

1.17. Types of Resistors

(@) Carbon Composition

It is a combination of carbon particles and a binding resin with different proportions for provid-
ing desired resistance. Attached to the ends of the resistive element are metal caps which have axial
leads of tinned copper wire for soldering the resistor into a circuit. The resistor is enclosed in a
plastic case to prevent the entry of moisture and other harmful elements from outside. Billions of
carbon composition resistors are used in the electronic industry every year. They are available in
power ratings of 1/8, 1/4, 1/2, 1 and 2 W, in voltage ratings of 250, 350 and 500 V. They have low
failure rates when properly used.

Such resistors have a tendency to produce electric noise due to the current passing from one
carbon particle to another. This noise appears in the form of a hiss in a loudspeaker connected to a
hi-fi system and can overcome very weak signals. That is why carbon composition resistors are used
where performance requirements are not demanding and where low cost in the main consideration.
Hence, they are extensively used in entertainment electronics although better resistors are used in
critical circuits.

(b) Deposited Carbon

Deposited carbon resistors consist of ceramic rods which have a carbon film deposited on them.
They are made by placing a ceramic rod in a methane-filled flask and heating it until, by a gas-
cracking process, a carbon film is deposited on them. A helix-grinding process forms the resistive
path. As compared to carbon composition resistors, these resistors offer a major improvement in
lower current noise and in closer tolerance. These resistors are being replaced by metal film and
metal glaze resistors.

(c) High-Voltage Ink Film

These resistors consist of a ceramic base on which a special resistive ink is laid down in a helical
band. These resistors are capable of withstanding high voltages and find extensive use in cathode-ray
circuits, in radar and in medical electronics. Their resistances range from 1 kQ to 100,000 MQ with
voltage range upto 1000 kV.

(d) Metal Film

Metal film resistors are made by depositing vaporized metal in vacuum on a ceramic-core rod.
The resistive path is helix-ground as in the case of deposited carbon resistors. Metal film resistors
have excellent tolerance and temperature coefficient and are extrememly reliable. Hence, they are
very suitable for numerous high grade applications as in low-level stages of certain instruments although
they are much more costlier.
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(e) Metal Glaze

A metal glaze resistor consists of a metal glass mixture which is applied as a thick film to a
ceramic substrate and then fired to form a film. The value of resistance depends on the amount of
metal in the mixture. With helix-grinding, the resistance can be made to vary from 1 2to many mega-
ohms.

Another category of metal glaze resistors consists of a tinned oxide film on a glass substrate.
(f) Wire-wound

Wire-wound resistors are different from all other types in the sense that no film or resistive
coating is used in their construction. They consist of a ceramic-core wound with a drawn wire having
accurately-controlled characteristics. Different wire alloys are used for providing different resistance
ranges. These resistors have highest stability and highest power rating.

Because of their bulk, high-power ratings and high cost, they are not suitable for low-cost or
high-density, limited-space applications. The completed wire-wound resistor is coated with an insu-
lating material such as baked enamel.

() Cermet (Ceramic Metal)

The cermet resistors are made by firing certain metals blended with ceramics on a ceramic sub-
strate. The value of resistance depends on the type of mix and its thickness. These resistors have very
accurate resistance values and show high stability even under extreme temperatures. Usually, they
are produced as small rectangles having leads for being attached to printed circuit boards (PCB).

1.18. Nonlinear Resistors

Those elements whose V' —I curves are not straight lines are called nonlinear elements because
their resistances are nonlinear resistances. Their -/ characteristics can be represented by a suitable
equation.

Examples of nonlinear elements are filaments of incandescent lamps, diodes, thermistors and
varistors. A varistor is a special resistor made of carborundum crystals held together by a binder.
Fig. 1.37 (a) shows how current through a varistor increase rapidly when the applied voltage increases
beyond a certain amount (nearly 100 V in the present case).

Vi R I mA
100 V+
I
(@) I O t O VO 04 08 4
(a) (b) (c) (d)
Fig. 1.37

There is a corresponding rapid decrease in resistance when the current increases. Hence, varis-
tors are generally used to provide over-voltage protection in certain circuits.

A thermistor is made of metallic oxides in a suitable binder and has a large negative coefficient
of resistance i.e., its resistance decreases with increase in temperature as shown in Fig. 1.30 (b). Fig.
1.30 (c¢) shows how the resistance of an incandescent lamp increases with voltage whereas Fig. 1.30
(d) shows the V-1 characteristics of a typical silicon diode. For a germanium diode, current is related
to its voltage by the relation.

=1 (eV/0.026 -1
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1.19. Varistor (Nonlinear Resistor)

It is a voltage-dependent metal-oxide material whose resistance decreases sharply with increas-
ing voltage. The relationship between the current flowing through a varistor and the voltage applied
across it is given by the relation : i = k¢" where i = instantaneous current, e is the instantaneous voltage
and nis a constant whose value depends on the metal oxides used. The value of nfor silicon-carbide-
based varistors lies between 2 and 6 whereas zinc-oxide-based varistors have a value ranging from 25
to 50.

The zinc-oxide-based varistors are primarily used for protecting solid-state power supplies from
low and medium surge voltage in the supply line. Silicon-carbide varistors provide protection against
high-voltage surges caused by lightning and by the discharge of electromagnetic energy stored in the
magnetic fields of large coils.

1.20. Short and Open Circuits

When two points of circuit are connected together by a thick metallic wire (Fig. 1.38), they are said
to be short-circuited. Since ‘short’ has practically zero resistance, it gives rise to two important facts :

(i) no voltage can exist across it because V=IR=1x 0=0
(ii) current through it (called short-circuit current) is very large (theoretically, infinity)

A
o 2 oz g =0
Rest of Circuit O Rest of Circuit = §
g oS3 RyB = o
-
n
. I
B
Fig. 1.38 Fig. 1.39

Two points are said to be open-circuited when there is no direct connection between them
(Fig. 1.39). Obviously, an ‘open’ represents a break in the continuity of the circuit. Due to this break

(i) resistance between the two points is infinite.
(ii) there is no flow of current between the two points.

1.21. ‘Shorts’ in a Series Circuit

Since a dead (or solid) short has almost zero resistance, it causes the problem of excessive current
which, in turn, causes power dissipation to increase many times and circuit components to burn out.

! 4 A A
1Q
B
%IZV %12V 20
@
30
® P © P

Fig. 1.40
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In Fig. 1.40 (a) is shown a normal series circuit where
V=12V,R=R +R,+R,=6Q
I = V/IR=12/6=2A,P=FR=2"X 6=24W
In Fig. 1.40 (b), 3-Qresistor has been shorted out by a resistanceless copper wire so that R ., = 0.
Now, total circuit resistance R=1+2+0=3 Q Hence,/=12/3=4Aand P= 4 x 3=48W.
Fig. 1.40 (c) shows the situation where both 2 € and 3 Q resistors have been shorted out of the
circuit. In this case,
R=1QI=12/1=12A and P=12°x 1=144W
Because of this excessive current (6 times the normal value), connecting wires and other circuit
components can become hot enough to ignite and burn out.

1.22. ‘Opens’ in a Series Circuit

In a normal series circuit like the one shown in Fig. 1.41 (a), there exists a current flow and the
voltage drops across different resistors are proportional to their resistances. If the circuit becomes
‘open’ anywhere, following two effects are produced :

(i) since ‘open’ offers infinite resistance, circuit current becomes zero. Consequently, there is

AMAA A no voltage drop across R, and R,.
R, R, (ii) whole of the applied voltage
(i.e. 100 V in this case) is felt across the
| y ‘open’ i.e. across terminals A and B
v =100V — 100V % [Fig. 1.41 (b)).

T B BO\\_/ The reason for this is that R, and R,
100y become negligible as compared to the

R R, infinite resistance of the ‘open’ which has
/Wz\/\ AMA practicallly whole of the applied voltage
(a) (b) dropped across it (as per Voltage Divider
Rule of art. 1.15). Hence, voltmeter in
Fig. 1.41 Fig. 1.41 (b) will read nearly 100 V i.c.

the supply voltage.

1.23. ‘Opens’ in a Parallel Circuit

Since an ‘open’ offers infinite resistance, there would be no current in that part of the circuit
where it occurs. In a parallel circuit, an ‘open’ can occur either in the main line or in any parallel branch.
As shown in Fig. 1.42 (a), an open in the main line prevents flow of current zo all branches.
Hence, neither of the two bulbs glows. However, full applied voltage (i.e. 220 V in this case) is
available across the open.
Open
o j) () @ > -

B B, By B,

o D B ) )

Open Filament

o @ - -

(@ ®)
Fig. 1.42
In this Fig. 1.42 (b), ‘open’ has occurred in branch circuits of B,. Since there is no current in this
branch, B, will not glow. However, as the other bulb remains connected across the voltage supply, it
would keep operating normality.
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It may be noted that if a voltmeter is connected across the open bulb, it will read full supply
voltage of 220 V.

1.24. ‘Shorts’ in Parallel Circuits

Suppose a ‘short’ is placed across R, (Fig. 1.43). It becomes directly connected across the
battery and draws almost infinite current because not only its own resistance but that of the connect-
ing wires AC and BD is negligible. Due to this excessive current, the wires may get hot enough to
burn out unless the circuit is protected by a fuse.

Ry
B
C A A AVA
. v 1 =
V_— Rlé Rzé Ry 2v_— Rlé Rzé Ry 2
— wnn — wn
D B D C
(a) (b)
Fig. 1.43

Following points about the circuit of Fig. 1.43 (a) are worth noting.
1. not only is R, short-circuited but both R, and R, are also shorted out i.e. short across one
branch means short across all branches.
2. there is no current in shorted resistors. If there were three bulbs, they will not glow.
3. the shorted components are not damaged, For example, if we had three bulbs in Fig. 1.43
(a), they would glow again when circuit is restored to normal conditions by removing the
short-circuited.
It may, however, be noted from Fig. 1.43 (b) that a short-circuit across R, may short out R, but
not R, since it is protected by R,.

1.25. Division of Current in Parallel Circuits

In Fig. 1.44, two resistances are joined in parallel across a voltage V. The current in each branch,

as given in Ohm’s law, is R
I, = V/R,and I, = VIR, 0 i
1 R A B
I, R L B
L x
As Rl Gl and R2 G2 ¥
Lo _ 6
I, G,
Hence, the division of current in the branches of a parallel O Vo
circuit is directly proportional to the conductance of the branches
or inversely proportional to their resistances. We may also Fig. 1.44
express the branch currents in terms of the total circuit current
thus :
_ _ I R _
Now I +1, =1 L=1-1 L_-"2 or |[R,=R,(I-I)
I-1, R
= R =1 G and I,=1 R =1 G

R-R, G +G,
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This Current Divider Rule has direct application in solving electric circuits by Norton’s theorem

(Art. 2.25).

Take the case of three resistors in parallel connected across a voltage V' (Fig. 1.45). Total current

is /=1, + I, +I,. Let the equivalent resistance be R. Then

Vv =
Also Vo=
L _
or I
I
N — =
ow R
R =
From (i) above, [, =
Similarly, I, =
I, =

IR L R
. - =AM
I,R, - IR=1IR
1 1% L R2
R ) e AAA
71 or 1, =IR/R, ..(0) e
L R
3
L+L+L Al Y
R R, R
R1R2R3
RyRy + RyR; + RR, O Vo
R,R, , G, Fig. 1.45
RR, +R,R,+R,R | G +G,+G,
s RR, s G,
RIRZ R2R3 RSRI ' Gl G2 G3
I R1R2 I G3
RR, R,R, RR ‘G, G, G

Example 1.37. A4 resistance of 10 Q is connected in series with two resistances each of 15 €
arranged in parallel. What resistance must be shunted across
this parallel combination so that the total current taken shall

be 1.5 A with 20 V applied ?

(Elements of Elect. Engg.-1; Banglore Univ.)

Solution. The circuit connections are shown in Fig. 1.46.

Drop across 10-Qresistor=1.5x 10=15V

Drop across parallel combination, V,, =20 -15=5V
Hence, voltage across each parallel resistance is 5 V.
= 5/15=1/3A,1,=5/15=1/3 A

11
13
LR

= 1.5-(1/3+1/3)=5/6 A

5 or (5/6)R=5 or R=6Q

L 15
—
10 L 15
DYy 42 w8
L
_——
R
AlS A v
20V
Fig. 1.46

Example 1.38. If 20 V be applied across AB shown in Fig. 1.40, calculate the total current, the
power dissipated in each resistor and the value of the series resistance to have the total current.
(Elect. Science-II, Allahabad Univ. 1992)

24

a AW 7 B M 2 7
AO——— —>0B
y A y I b
y b AMA M B 2y
o n &
c AN
g 6
d A 7 370/199
5 40— AW OB
e AW

Fig. 1.47
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Solution. As seen from Fig. 1.47. R, =370/199 Q.
Hence, total current = 20+370/199 =10.76 A
1, = 10.76 X 5(5+74.25)=6.76 4;1,=10.76 -6.76 =4 A
I, = 6.76x 6/9=451 A;1,=6.76 -4.51 =2.25 A
Voltag drop across 4 and M, V,,,=6.76 X 24/25=6.48V
1, = V,/2=648/2=324A;1,=648/4=1.62A;1. =6.48/6=1.08 A
1, = 648/8=081A,1,=20/5=4A
Power Dissipation
P, =I’R =324"x2=21W,P,=1.62°x 4=104W, P,=1.08°x 6=TW
P,=081°x 8=525W,P,=4’x 5=80 W,P,=451°x 3=61W
P,=225"x 6=304W
The series resistance required is 370/199 Q
Incidentally, total power dissipated = I* R ;= 10.76° X 370/199 =215.3 W (as a check).
Example 1.39. Calculate the values of different currents for the circuit shown in Fig. 1.48.
What is the total circuit conductance ? and resistance ?
Solution. Asseen, / = I, + 1, + ;. The current division takes place at point 5.
As seen from Art. 1.25.

G

[ =1 —
G+ G, +G; 4 1 0.4S B
—2x%losy
0.6

I, = 12x 0.2/0.6=4A (Drz A

I = 12x 0.3/0.6=6A
Gy = 0.1402+03=068 Fig. 1.48
L L, b1, 1.2 p o —1G,.-2560Q

+ =
G, Gy Gup 04 06 6

Example 1.40. Compute the values of three branch currents for the circuits of Fig. 1.49 (a).
What is the potential difference between points A and B ?

Solution. The two given current sources may be combined together as shown in Fig. 1.49 (b).
Net current =25 —6 = 19 A because the two currents flow in opposite directions.

4
1 L V5 I *12 A
254 0.55 30258 §0-2S <D19A 0.55 30255 3028
6A
B
(a) (b)
Fig. 1.49
Now, G = 05+025+02-095S: 1 —1-10x 05 _ 194
’ T SR BE 0.95
G 0.5 G 02
= [ 2 19x 22 —5A. [ =] B =19x 2= =
L G 005 A L=IG 095 44
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The same voltage acts across the three conductances.

Example 1.41. Two conductors, one of copper and the other of iron, are connected in parallel
and at 20°C carry equal currents. What proportion of current will

pass through each if the temperature is raised to 100°C ? Assume Copper
o for copper as 0.0042 and for iron as 0.006 per °C at 20°C. Find
also the values of temperature coefficients at 100°C.

(Electrical Engg. Madras Univ. ) o

Solution. Since they carry equal current at 20°C, the two con-
ductors have the same resistance at 20°C i.e. R,,. Astemperature is
raised, their resistances increase through unequally.

For Cu, Ripo = Ry (1+80x 0.0042)=1.336 R,,

For iron R 0 = Ry, (1+80x 0.006)=1.48 R,,

As seen from Art. 1.25, current through Cu conductor is

I = Ix R0 _Ix 1.48 R,
Ripo + R 100 2.816 R,

Hence, current through Cu conductor is 52.56 per cent of the total current. Obviously, the re-

maining current i.e. 47.44 per cent passes through iron.

Or current through iron conductor is
R I 1.336 Ry,

=0.5256 1 or 52.56% of |

I = I - =0.4744 1 or 47.44% of |
2 RIOOJIRIOO 2.816 Ry, 1

For C =L _ g00314°C

ortt %100 = 170.0042) + 80

For iron, Ooo = m: 0.0040°C™"

Example 1.42. A4 battery of unknown e.m.f. is con-
nected across resistances as shown in Fig. 1.50. The volt-
age drop across the 8 Q resistor is 20 V. What will be the
current reading in the ammeter ? What is the e.m.f. of the
battery ?(Basic Elect. Engg.; Bangladesh Univ., 1990)

Solution. Current through 8 Qresistance=20/8=2.5 A

This current is divided into two parts at point 4; one
part going along path AC and the other along path ABC
which has a resistance of 28 Q.

I, = 25X

1 _
e

Hence, ammeter reads 0.7 A.
Resistance between 4 and C= (28 X 11/39) ohm.
Total circuit resistance = 8 + 11 + (308/39) = 1049/39 Q
: E = 25%1049/39=67.3V

Fig. 1.50

1.26. Equivalent Resistance

The equivalent resistance of a circuit (or network) between its any two points (or terminals) is
given by that single resistance which can replace the entire given circuit between these two points. It
should be noted that resistance is always between two given points of a circuit and can have different
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values for different point-pairs as illustrated by Example 1.42. it can usually be found by using series
and parallel laws of resistances. Concept of equivalent resistance is essential for understanding
network theorems like Thevenin’s theorem and Norton’s theorem etc. discussed in Chapter 2.

Example 1.43. Find the equivalent resistance of the circuit given in Fig. 1.51 (a) between the
Jollowing points (i) A and B (ii) C and D (iii) E and F (iV) A and F and (V) A and C. Numbers
represent resistances in ohm.

Solution. (i) Resistance Between A and B

In this case, the entire circuit to the right side of 4B is in parallel with 1 Q resistance connected
directly across points 4 and B.

2 4 2 2
A C E \4 i C A c 4 A
%1 é 2§ ! 6§ 6% ! 3§ ! 5% %2
B D F B D F B D B D B
(a) (b) (c) (d) (e)
Fig. 1.51

As seen, there are two parallel paths across points C and D; one having a resistance of 6  and
the other of (4 + 2) = 6 Q. As shown in Fig. 1.51 (¢), the combined resistance between C and D is
=6 6 =3 Q Further simplifications are shown in Fig. 1.51 (d) and (e). Asseen, R,,,=5/6 Q

(i) Resistance between C and D

As seen from Fig. 1.51 (a), there are three parallel paths between C and D (i) CD itself of 6 Q
(ii) CEFD of (4 +2)=6 Qand (iil) CABD of (2 + 1) =3 Q Tt has been shown separately in Fig. 1.52
(a). The equivalent resistance R, =3 || 6 || 6 = 1.5 Q as shown in Fig. 1.52 (b).

(iii) Resistance between E and F

In this case, the circuit to the left side of EF is in parallel with the 2 Q resistance connected
directly across £ and F. This circuit consists of a 4 Q resistance connected in series with a parallel

4
A C E T A € n D€ «/?/w E E E
§3 6§ 6% 1.5§ %3 %6 2 %2 % %6 2% %5
B D F p B D FD F D F F
(a) (b) (@) (b) (¢ (d)
Fig. 1.52 Fig. 1.53

circuit of 6 || (2 + 1) = 2 Q resistance. After various simplifications as shown in Fig. 1.53,
Rpp=216=15Q
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2 4 2 2
A C E A o C A v c 4 A
%1 6§ 2 % 1 6 § 6 § ! 3 % s § %
O
B D F B D F B D B F
(@) (b) (c) (d) (e)
Fig. 1.54

(iv) Resistance Between A and F

As we go from 4 and F, there are two possible routes to begin with : one along ABDF and the other
along AC. Atpoint C, there are again two alternatives, one along CDF and the other along CEF..

As seen from Fig. 1.54 (b), R, =6 || 6 =3 Q. Further simplification of the original circuit as
shown in Fig. 1.54 (¢), (d) and (e) gives R ;. = 5/6

(v) Resistance Between A and C

In this case, there are two parallel paths between 4 and C ; one is directly from 4 to C and the
other is along ABD. At D, there are again two parallel paths to C; one is directly along DC and the
other is along DFEC.

4 2 c 4 F A4 2 C 4 2 C

O—MWW O W

%1 6§ 2% §1 6§ 6§ §1 3§ §1 5§

A
o

O

N1
MAN

O O O O (@]
B D F B D F B D B F
(a) (b) (c) (d) (e

Fig. 1.55

As seen from Fig. 1.55 (b), R, =6 || 6 =3 . Again, from Fig. 1.55 (d), R, =2 4=4/3Q

Example 1.44. Two resistors of values 1 kQ and 4 Q are connected in series across a constant
voltage supply of 100 V. A voltmeter having an internal resistance of 12 k€ is connected across the
4 kQ resistor. Draw the circuit and calculate

(a) true voltage across 4 kQ resistor before the voltmeter was connected.

(b) actual voltage across 4kQ resistor after the voltmeter is connected and the voltage recorded

by the voltmeter.
(C) change in supply current when voltmeter is con- 12K Q
nected. 1K Q /Jm-
(d) percentage error in voltage across 4 kQ resistor. 4 AMA

. B C
Solution. (a) True voltage drop across 4 kQ resistor as K0

found by voltage-divider rule is 100 x 4/5=80V
Current from the supply = 100/(4 + 1) = 20 mA

(b) InFig. 1.56, voltmeter has been joined acrossthe | ~iop0vo—
4 kQ resistor. The equivalent resistance between B and Fig. 1.56

C=4x 12/16 =3 kQ
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Drop across Band C=100x 3/(3+1)=75V.
(c) Resistance between 4 and C=3 +1=4kQ
New supply current = 100/4 = 25 mA
increase in current = 25 =20 =5 mA
actual voltage — true voltage _ (75— 80)
true voltage - 80

(d) Percentage error in voltage = x100=-6.25%

The reduction in the value of voltage being measured in called voltmeter loading effect because
voltmeter loads down the circuit element across which it is connected. Smaller the voltmeter resis-
tance as compared to the resistance across which it is connected, greater the loading effect and,
hence, greater the error in the voltage reading. Loading effect cannot be avoided but can be mini-
mized by selecting a voltmeter of resistance much greater than that of the network across which it is
connected.

Example 1.45. [In the circuit of Fig. 1.57, find the value of supply voltage V so that 20-C
resistor can dissipate 180 W.

Solution.  [,’x 20 = 180W; [,=3A ]

Since 15 Q and 20 Q are in parallel,
Lx15 = 3x 20 - L=4A h 5
I, = L+[,=4+3=TA 1
. . . . . BB 25 15 §20
Now, resistance of the circuit to the right of point 4is | V
= 10+15x 20/35=130/7Q - ‘
I,x25 = 7Tx 130/7 e AATA = =1
! E B D
1, = 26/5A=52A
I =1, +L=52+T7=122A Fig. 1.57
Total circuit resistance
R, = 5+25]130/7=955/61 Q

V =1.R, =122x 955/61 =191V

Example 1.46. For the simple ladder network shown in Fig. 1.58, find the input voltage V,
which produces a current of 0.25 A in the 3 Q resistor. All resistances are in ohm.

Solution. We will assume a current of 1 A in the 3 Q resistor. The voltage necessary to produce
1 A bears the same ratio to 1 A as V; does to 0.25 A because of the linearity of the network. It is
known as Current Assumption technique.

Since R ,.,=R,=6Q
I [2 10 ]4 cdef of
A AN ¢ = Hence, Icf= 1A
L and Vg = Vegg=1X 6=6V.
Also, I, =1+1=2A
_:V 25 15 §20 Vig = Vip ™ Vef=2>< 5+6=16V
Ibg = 16/8=2 A
5 Iab:Ibc+bbg:2+2:4A
E Vg T p Vi=Vypt VetV
Fig. 1.58 = 4x 7+16+4x 9=80V
Taking the proportion, we get
8 _ W

1 025 . V,=80x 025=20V
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Example 1.47. In this circuit of Fig. 1.59, find the value R, and R, so that I, = I ,/n and the input

resistance as seen from points A and B is R ohm.

Solution. As seen, the current through R, in (/, —/,). Hence, p.d. across points C and D is

R,(I,-I,)= R, +R)orR, I, =(R, + R, +R) I, y R R
I R +R,+R M VW
A S L) L == —h
2 2 V=
The input resistance of the circuit as viewed from
terminals 4 and B is required to be R. R, R g
R = R, +R,|| (R, +R) R (- 1,)
R +R . ) o o
= R+ ...using Eq. (i) = D
R(n-1) = R (n+1) Fig. 1.59
= ——R and R, = =
R, P n-1) 21

1.27. Duality Between Series and Parallel Circuits

There is a certain peculiar pattern of relationship between series and parallel circuits. For
example, in a series circuit, current is the same whereas in a parallel circuit, voltage is the same.
Also, in a series circuit, individual voltages are added and in a parallel circuit, individual currents
are added. It is seen that while comparing series and parallel circuits, voltage takes the place of
current and current takes the place of voltage. Such a pattern is known as “duality” and the two

circuits are said to be duals of each other.

As arranged in Table 1.4 the equations involving voltage, current and resistance in a series circuit
have a corresponding dual counterparts in terms of current, voltage and conductance for a parallel

circuit.
Table 1.4
Series Circuit Parallel Circuit
/h L=L=.... v, Vo=Va=.........
Ve = ViV +V+ . I L+L+L+ ...
R, = Ri+R,+Ry+ ... Gy = G+G+G+ ...
Vl — VZ V3 11 12 13
I:R1_R2_R3_ ...... ViGl_Gz_Gz._ .....
ivi AL N ) g .G, G
Voltage Divider Rule V, = Vp——,V, =Vp Current Divider Rule [, = I7——, I, =1
RT RT GT GT
Tutorial Problems No. 1.4
15 7 1
1. Using the current-divider rule, find the ratio MW
1,/I in the circuit shown in Fig. 1.60.
[0.25] ’s I
2. Find the values of variables indicated in the %10 %6 5

circuit of Fig. 1.61. All resistances are in
ohms.

[(@) 40 V (b) 21 V; 15V (C) =5 A; 3 A]

Fig. 1.60
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2 2
A . W
0.6A D Kéloo ozACD 395% 3% T CD J:IZV §6 6V ;

(b)
Fig. 1.61

@ (©

3. Anohmeter is used for measuring the resistance of a circuit between its two terminals. What would be
the reading of such an instrument used for the circuit of Fig. 1.62 at point (a) AB (b) AC and (¢) BC ?
All resistances are in ohm.
[@)25Q()24Q ()9
4. Find the current and power supplied by the battery to the circuit of Fig. 1.63 (/) under normal condi-
tions and (i7) when a ‘short’ occurs across terminals 4 and B. All resistances are in kilo-ohm.
[() 2 mA; 24 m W; (ii) 34 mA; 36 mW)]
50 8 4k Q 6k Q
A — B MIA—o—A W IS elete
15 303 4y 3 =nv 30 —ov sk s
25 10
— \ 3
Fig. 1.62 Fig. 1.63 Fig. 1.64
4 38 28 R R 2
A
Rig” +([ T
8A<D 4 Q%V 103 2A<D 40A<D 68 %45 v R§ RSV
B
Fig. 1.65 Fig. 1.66 Fig. 1.67

S

o

10.

. Compute the values of battery current / and voltage drop across 6 kQ resistor of Fig. 1.64 when

switch S'is (a) closed and (b) open. All resistance values are in kilo-ohm.

[(@) 3mA; 6 V; (b) 2.25 mA; 0V]
For the parallel circuit of Fig. 1.65 calculate (i) V (if) 1, (iii) I,. [(i) 20 V; (ii) 5 A; (iii) =5 A]
Find the voltage across terminals 4 and B of the circuit shown in Fig. 1.66. All conductances are in
siemens (). [5V]

. Prove that the output voltage V|, in the circuit of Fig. 1.67 is V7/13.

A fault has occurred in the circuit of Fig. 1.68. One resistor has burnt out and has become an open.
Which is the resistor if current supplied by the battery is 6 A ? All resistances are in ohm. [4 &
In Fig. 1.69 if resistance between terminals 4 and B measures 1000 € which resistor is open-
circuited. All conductance values are in milli-siemens (mS). [0.8 mS]
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_

— 12V %6 4%
=

Fig. 1.68

11. In the circuit of Fig. 1.70, find current (@) / and (b) /.

12.

13.

14.

15.

16.

A0
o.z§ 03% o.s% 0.5%
BO
Fig. 1.69
[(@) 2 A; (D) 0.5 A]
; 3 ) 7
. A A MW—0 4
100 V
= %6 6 %12 % 4
— 2
Y
Fig. 1.71
[25 A

Deduce the current / in the circuit of Fig. 1.71. All resistances are in ohms.
Two resistors of 100 Q and 200 Q are connected in series across a 4-V cell of negligible internal

resistance. A voltmeter of 200 Q resistance is used to measures P.D. across each. What will the

voltage be in each case ?

Using series—parallel combination laws,
find the resistance between terminals 4
and B of the network shown in Fig. 1.72.

[4R]
A resistance coil 4B of 100 Q resistance
is to be used as a potentiometer and is
connected to a supply at 230 V. Find, by
calculation, the position of a tapping
point C between A and B such that a
current of 2 A will flow in a resistance of
50 Q connected across 4 and C.

in ohms.

[1 V across 100 Q ; 2 V across 200 Q]

4 20

y R 2R 2R
| | | |
© | | | | —
5 2R 2R
| [
o— | | | —
Fig. 1.72

[43.4 Q from A to C] (London Univ.)

In the circuit shown in Fig. 1.73, calculate (a) current / (b) current /; and (c) V. All resistances are

[(@) 4 A (b) 0.25A (C) 4 V]

100 25

Ol «——<—»+0

6
SA

Fig. 1.74
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18.

24V

19.

20.

21.

22,

23.
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In the circuit given in Fig. 1.74, calculate (a) current through the 25 Q resistor (b) supply voltage V.
All resistances are in ohms. [(@) 2 A (b) 100 V]

Using series and parallel combinations for the electrical network of Fig. 1.75, calculate (a) current
flowing in branch AF (b) p.d. across branch CD. All resistances are in ohms. [(a) 2 A (b) 1.25 V]

o

13 5 1 c

1.4

18 dc
14 5 Supply § 6 2 8

22

AN

AMAN O

F E D =

Fig. 1.75 Fig. 1.76
Neglecting the current taken by voltmeters ¥, and ¥, in Fig. 1.76, calculate (@) total current taken
from the supply () reading on voltmeter V| and (c) reading on voltmeter V.
[@15A(b)14V (c) 16 V]
Find the equivalent resistance between terminals 4 and B of the

circuit shown in Fig. 1.77. Also, find the value of currents /,, I,,
and I;. All resistances are in ohm.

BQ:;1,=2A;1,=06A;1;,=04A] = 24V
In Fig. 1.78, the 10 Q resistor dissipates 360 W. What is the volt- w

40 60

age drop across the 5 Q resistor ? [30 V]

In Fig. 1.79, the power dissipated in the 10 € resistor is 250 W.
What is the total power dissipated in the circuit ? [850 W] Fig. 1.77

25
AN

:
D 0t L

Fig. 1.78 Fig. 1.79 Fig. 1.80
What is the value of E in the circuit of Fig. 1.80 ? All resistances are in ohms. [4 V]
R 2

ae- e+ "WW—o0

R

Qo
6

b @&

(@ ®) ©
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24. Find the equivalent resistance R, _, at the terminals @ —b of the networks shown in Fig. 1.81.

(@0®OC)R(2
25. Find the equivalent resistance between terminals a and b of the circuit shown in Fig. 1.82 (). Each
resistance has a value of 1 [5/11 Q]
p <
o_
a
b
b i
(@) (b)

Fig. 1.82

26. Find the equivalent resistance between terminals a and b of the circuit shown in Fig. 1.82 (b). Each

resistor has a value of 1 [5/12 Q]

27. Two resistors of value 1000 Q and 4000 Q are connected in series across a constant voltage supply of

150 V. Find (a) p.d. across 4000 ohm resistor () calculate the change in supply current and the
reading on a voltmeter of 12,000 € resistance when it is connected across the larger resistor.

[(@) 120 V (b) 7.5 mA; 112.5 V]

1.28. Relative Potential

It is the voltage of one point in a circuit with respect to that of another point (usually called the
reference or common point).

Consider the circuit of Fig. 1.83 (a) where + 4 20 B+ /%/O\X/\_ C _
the most negative end-point C has been taken as v ﬁ @
the reference. With respect to point C, both points N 7 BC )
A and B are positive though 4 is more positive ' £l =l
than B. The voltage of point B with respect to R
that of Ci.e. V. =+30 V. + 4 NOV_p 30V o _
Similarly, ¥/, = + (20 + 30) =+ 50 V. B S VW= "
In Fig. 1.83 (b), the most positive end point  Reference ’
A has been taken as the reference point. With
respect to 4, both B and C are negative though C  + 4 0V _ B+ ,%/0\/\\]/\ C _
is more negative than B. 1} C ©
Ve =20V, Vo, =+20+30)=50V Reference
In Fig. 1.83 (¢), mid-point B has been taken Fig. 1.83

as the reference point. With respect to B, 4 is at
positive potential whereas C is at a negative potential.

Hence, V,;=+20 V and V., =-30V (of course, V- =+ 30V)

It may be noted that any point in the circuit can be chosen as the refer-
ence point to suit our requirements. This point is often called ground or
earth because originally it meant a point in a circuit which was actually
connected to earth either for safety in power systems or for efficient radio

— reception and transmission. Although, this meaning still exists, yet it has

become usual today for ‘ground’ to mean any point in the circuit which is
Fig. 1.84 connected to a large metallic object such as the metal chassis of a transmit-
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ter, the aluminium chassis of a receiver, a wide strip of copper plating on a printed circuit board,
frame or cabinet which supports the whole equipment. Sometimes, reference point is also called
common point. The main advantage of using a ground system is to simplify our circuitry by saving
on the amount of wiring because ground is used as the return path for may circuits. The three com-

monly-used symbols for ground are shown in Fig. 1.84.
Example 1.48. In Fig. 1.85, calculate the values of (i) V ;. (ii) V., and (iii) V.
Solution. It should be noted that V. stands for the

potential of point 4 with respect to point F. The easiest 4 0_12| M B E F——oF
way of finding it is to start from the reference point F' ; / 24V
and go to point 4 along any available path and calculate 6V \Y
the algebraic sum of the voltages met on the way. Start- /\ /
ing from point F as we go to point 4, we come across c_| D
different battery voltages. Taking the sign convention BV
given in Art. 1.28, we get Fig. 1.85
() Vip = -24+4+8-6+12= -6V
The negative sign shows that point 4 is negative with respect to point 7 by 6 V.

(ii) Similarly, Viy = —-12+6-8-4=-18V
(iii) Starting from point B, we get V,,, =6 -8 =4 + 24 =18 V.
Since the result is positive it means that point /' is at a higher potential than point B by 18 V.
Example 1.49. In Fig. 1.86 compute the relative potentials of points A, B, C, D and E which
(i) point A is grounded and (1) point D is grounded. Does it affect the circuit operation or potential
difference between any pair of points ?

Solution. As seen, the two batteries have been connected in series opposition. Hence, net

circuit voltage =34-10=24V
Total circuit resistance =6+4+2=12Q
Hence, the circuit current = 24/12=2 A
Drop across 2 Q resistor = 2Xx 2=4YV, Drop across 4 Qresistor=2x 4=8V
Drop across 6 € resistor =2xX6=12V
ov 4 |V g 28 © 4 |V B 20
:||I O— AW :||r O AMA——0
J__ ‘ 2A A 2A
; 6Q 10V ; 60 10V =
2A 40 A [ l 2A 40
O AN O NN oD
E D E 1
Fig. 1.86 Fig. 1.87

(i) Since point B is directly connected to the positive terminal of the battery whose negative
terminal is earthed, hence V, =+ 34 V.

Since there is a fall of 4 V across 2 Q resistor, V=34 -4 =30V

As we go from point C to D i.e. from positive terminal of 10-V battery to its negative terminal,
there is a decrease in potential of 10 V. Hence, ¥, = 30 —10 = 20 i.e. point D is 20 V above the

ground 4.
Similarly, Vy = Vp—voltage fall across 4 € resistor =20 -8 =+ 12V
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Also V, = Vy—fall across 6 Qresistor=12 (2% 6)=0V
(ii) InFig. 1.87, point D has been taken as the ground. Starting from point D, as we go to E there
is a fall of 8 V. Hence, V;=—-8 V. Similarly, V, =—-(8 + 12) =-20 V.
As we go from 4 to B, there is a sudden increase of 34 V because we are going from negative
termmal of the battery to its positive terminal.
Ve = —20+34 +14V
V. = Vg —voltage fall across 2 Q resistor = 14 -4 =+ 10 V.
It should be so because C is connected directly to the positive terminal of the 10 V battery.
Choice of a reference point does not in any way affect the operation of a circuit. Moreover, it
also does not change the voltage across any resistor or between any pair of points (as shown below)
because the ground current i, = 0.
Reference Point A
Vey = Vo=V :30 —0=+30V; Vp=V.-V,=30-12=+18V
Vep = Vg =V,=34-20=+14V
Reference Point D
Vey = Vo=V, =10=(=20)=+30V; Vpy=V,=V,=10-(-8) =+ 18V
Vep = Vg =Vp,=14-0=+14V
Example 1.50. Find the voltage Vin Fig. 1.88 (a). All resistances are in ohms.

Solution. The given circuit can be simplified to the final form shown in Fig. 1.88 (d). As seen,
current supplied by the battery is 1 A. At point 4 in Fig. 1.88 (b), this current is divided into two equal
parts of 0.5 A each.

Obviously, voltage V represents the potential of point B with respect to the negative terminal of
the battery. Point B is above the ground by an amount equal to the voltage drop across the series
combination of (40 + 50) =90 Q

= 0.5x90=45V.

+100 V
1A A

A
% — 100V 60
; ; —o Vi B 100% - 100 100% = 100§

T100 V 100 V
—H A 40

1A

50 ‘ 50
L—AAA

®) () (d)
Fig. 1.88

1.29. Voltage Divider Circuit 4T—O
"

A voltage divider circuit (also called poten-
tial divider) is a series network which is used to =
feed other networks with a number of different v
voltages and derived from a single input voltage
source.

Fig. 1.89 (a) shows a simple voltage divider fo iﬁ
circuit which provides two output voltages or
V, and V,. Since no load is connected across the - - -

output terminals, it is called an unloaded voltage (@) ®)
divider.
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As seen from Art. 1.15.

R R
dV,=Vr. 2
R+R, 02T R +R,
The ratio V,/V is also known as voltage-ratio transfer function.
As seen, ho B !
Vo R +R, 1+RJ/R,
The voltage divider of Fig. 1.89 (b) can be used to get six different voltages :
Ve = Vs Ve =V Vg =V Vg =Vt V), Vie=(V i+ V) and V =V
Example 1.51. Find the values of different voltages that can be obtained from a 12-V battery
with the help of voltage divider circuit of Fig. 1.90.

Vi=v

Solution. R =R +R,+R,=4+3+1=8Q
Drop across R, = 12x 4/8=6V
Vy = 12-6=06V above ground
Drop across R, = 12x 3/8=45V
Ve = Vp—45=6-45=15
Drop across Ry, = 12x 1/8=15V 1 Q3R v
Different available load voltages are :
. oD
() Vy=V,~Vy=12-6=6V l
(i) Ve =12-15=105V @y v,,=12V —
(iv) Vge =6-15=45V V) Vep =15V Fig. 1.90

Example 1.52. What are the output voltages of the unloaded voltage divider shown in Fig.
1.91 ? What is the direction of current through AB ?

Solution. It may be remembered that both V; and V, are with respect
to the ground.

R 6+4+2=12Q
V, = drop across R,
= 24x 4/12=+8V
V, = drop across Ry =-24x 2/12=-4V

It should be noted that point B is at negative potential with respect R % 2Q°

to the ground. J Ié
Current flows from A4 to B i.e. from a point at a higher potential to a B

point at a lower potential. Fig. 1.91

Example 1.53. Calculate the potentials of point A, B, C and D in Fig. 1.92. What would be the
new potential values if connections of 6-V battery are reversed ? All resistances are in ohm.

Solution. Since the two batteries are connected in additive series, total voltage around the cir-
cuitis = 12 + 6 = 18 V. The drops across the three resistors as found by the voltage divider rule as
shown in Fig. 1.92 (@) which also indicates their proper polarities. The potential of any point in the
circuit can be found by starting from the ground point G (assumed to be at 0V) and going to the point
either in clockwise direction or counter-clockwise direction. While going around the circuit, the rise
in potential would be taken as positive and the fall in potential as negative. (Art. 2.3). Suppose we
start from point G and proceed in the clockwise direction to point 4. The only potential met on the
way is the battery voltage which is taken as positive because there is a rise of potential since we are
going from its negative to positive terminal. Hence, V,is +12 V.

Vg = 12-3=9V; V.=12-3-6=3V
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Similarly, Vp = 12-3-6-9=-6V.
It is also obvious that point D must be at —6 V because it is directly connected to the negative

terminal of the 6-V battery.

We would also find the
potentials of various points by
starting from point G and go-

ing in the counter-clockwise —\_—1 2V

direction. For example, V, =
—6+9+6=9YV as before.

The connections of the 6 G'—_L

—V battery have been reversed
in Fig. 1.92 (b). Now, the net
voltage around the circuitis 12 T
—6=6V. The drop over the 1
Qresistoris=6 x 1/(1 +2 +
3) =1 V; Drop over 2 Q

T T,
1 % 3_V 1

resistor is = 6 X 2/6 =2 V.
Obviously, V,=+ 12V, V,=
12-1=11V,V.=12-1-2
=9 V. Similarly, V), =12 -
1-2-3=+6V.

Example 1.54. Using minimum
number of components, design a
voltage divider which can deliver 1
Wat 100V, 2 Wat—=50Vand 1.6 W
at =80 V. The voltage source has an
internal resistance of 200 Q and
supplies a current of 100 mA. What
is the open-circuit voltage of the
voltage source ? All resistances are
in ohm.

Solution. From the given load
conditions, the load currents are as
follows :

I, = 1/100 = 10 mA,
I, = 2/50=40 mA,
15 = 1.6/80 =20 mA

For economising the number of
components, the internal resistance

Siv
— 12V -
B B
oV * oV +
2 §6 \% G'—_| 2 §2 \%
1 C 1 i +c
—6V N 6V N
329V 3 %3 v
D D
(a) (b)
Fig. 1.92
A 100mA B 10mA 100 V
% > | O
200 + . I T*
1
R, g 100V
oV _
+
4 —
= i Rz§
T I I1o=-50V
80V
40 mA
R
3
Ipz
100mA L 20 mA _
-¢ - O
D c -80V
Fig. 1.93

0f 200 € can be used as the series dropping resistance. The suitable circuit and the ground connec-

tion are shown in Fig. 1.93.

Applying Kirchhoff’s laws to the closed circuit ABCDA, we have
V=200 100 x 10> -100-80=0 or

V=200V
I, = 100 —10 = 90 mA

< R, =100 V/90 mA = 1.11 kQ

I; = 100 —20 = 80 mA; voltage drop across R; =—50 —(=80) = 30 V
R, = 30 V/80 mA =375 Q
L,+40 = 80 .. I,=40mA; R, =50 V/40 mA = 1.25 kQ
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Example 1.55. Fig. 1.94 shows a transistor with proper volt- [

ages established across its base, collector are emitter for proper func-
tion. Assume that thereis a voltage drop Vi across the base-emitter
Jjunction of 0.6 V and collector current I is equal to collector cur- i i
rent 1. Calculate () V, (b) V, and Vi (C) V, and Vy (d) I and I Il
(&) V5 (f) V. (9) Vg All resistances are given in kilo-ohm.

Solution. (a) The 250 k and 50 k resistors form a voltage-divider
bias network across 20 V supply.

.V, =20 250/300=16.7V N A T
(b) V,=20-167=33V
The voltage of point B with respect to ground is V, = 3.3 V f
©) Vy=V,~-Vp=33-0.6=27V. Also V, =27V i Il
d) I; =V,/2=27V/2k=1.35mA. Italso equals /. :
(e) V5 = drop across collector resistor=1.35mA x 8k=10.8V %
(f) Potential of point C'is V.=20-10.8=9.2 V ! —
© Veg = Ve—Vy=92-27=65V Fig-1.94

Tutorial Problems No. 1.5
1. A direct - current circuit comprises two resistors, ‘A’ of value 25 ohms, and ‘B’ of unknown value,

connected in parallel, together with a third resistor ‘C’ of value 5 ohms connected in series with
the parallel group. The potential difference across C is found to 90 V. It the total power in the circuit
is 4320 W, calculate :
(i) the value of resistor B, (if) the voltage applied to the ends of the whole circuit,
(iif) the current in each resistor.

(Mumbai University 2002) (Nagpur University, Summer 2002)
A current of 5 A flows through a non inductive resistance connected in series with a choke coil
when supplied at 250 V, 50 Hz. If voltage across resistance is 125 V and across coil is 200 V
calculate :
(i) impedance, resistance and reactance of coil
(if) power in coil
(iii) total power consumed in the circuit
(iv) draw phasor diagram.

(Pune University 2002) (Nagpur University, Winter 2003)

Define temp. coefficient of resistance.

%o
Prove Oct] = (1 . (xofl)
where o, = temp. coeff. of resistance at 0°C. (Gujrat University, Summer 2003)

A resistance wire 10 m long and cross section area 10 mm? at 0°C passes a current of 10 A, when
connected to a d.c. supply of 200 volts.
Calculate :
(a) resistivity of the material
(b) current which will flow through the wire when the temp. rises to 50°C. Given o, = 0.0003 per °C.
(Mumbai University, 2003) (Gujrat University, Summer 2003)
Why domestic appliances are connected in parallel ? Give comparison with series ckt.
(B.P.T.U., Orissa 2003) (Gujrat University,Summer 2003)
Two wires A and B made up of same material, wire B has twice the length of wire A and having
half the diameter to that of A. Calculate the ratio Rp/R,. (Gujrat University,Summer 2003)
A resistor of 12 Qis connected in series with a combination of 15 Q and 20 Q resistor in parallel.
When a voltage of 120 V is applied across the whole circuit find the current taken from the supply.
(V.T.U., Belgaum, Karnataka University, Summer 2002)
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8. A network is arranged as shown in Fig. 1.95. Determine the value of currents in each resistor.
(V.T.U., Belgaum, Karnataka University, Summer 2002)

AN AMA
50 10Q 120
+ +
4V[ 50 8Q = 6V
Fig. 1.95

9. A resistance of 100€2 is connected in series with 100uF capacitor across 200V, 60Hz supply. Find
the impedance, current and power factor.
(V.T.U., Belgaum, Karnataka University, Summer 2002)
10. An EMF whose instantaneous value is 100sin (314t — 7/4) volts is applied to a circuit and the current
flowing through it is 20sin (314t — 1.5708) Amperes. Find the frequency and the values of circuit
clements, assuming a series combination of circuit elements.
(V.T.U.,Belgaum, Karnataka University, Wimter 2003)
11. An inductive coil draws a current of 2A, when connected to a 230V, 50Hz supply. The power taken
by the coil is 100 watts. Calculate the resistance and inductance of the coil.
(Pune University, 2003) (V.T.U.,Belgaum University, Winter 2003)

12. Find the resistance between the terminals A and B for the network shown in Fig.1.96.
(Pune University, 2003) (V.T.U.,Belgaum University, Winter 2003)

10 Q

Fig. 1.96
13. A network is arranged as shown in Fig 1.97 Determine the current in each resistanc using loop current
method. (V.T.U., Belgaum, Karnataka University, Winter 2003)
3Q 4Q 5Q

r’WW AW AW
10V 3Q —15V

[ 6Q
Fig. 1.97

14. A resistor of 12€Q is connected in series with a combination of 15€ and 20€ resistor in parallel.
When a voltage of 120V is applied across the whole circuit. Find the current taken from the supply.

(V.T.U., Belgaum, Karnataka University, Winter 2004)
15. Four wires a,b,c and d are connected at a common point. The currents flowing in a,b and ¢ towards

T b 2n
the common point are i, = 6sin (WH'?), i = Scos (Wt‘*?) and i, = 3cos (Wt +T)

Determine the current in the fourth wire. (V.T.U., Belgaum, Karnataka University, Winter 2004)

16. Two resistors R = 2500 and R, = 4000Q are in series across a 100V supply. The voltage drop
across R and R, are successively mesured by a voltmeter having a resistance of 50,000€2 Find the
sum of the two readings. (V.T.U., Belgaum, Karnataka University, Winter 2004)
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Explain ‘resistance’, ‘reactance’ and ‘impedance’. (RGPV, Bhopal December 2002)
A 4 ohm resistor is connected to a 10 mH inductor across a 100 V, 50 Hz voltage source. Find
input current, voltage drops across resistor and inductor, power factor of the circuit and the real
power consumed in the circuit. (Mumbai University 2002) (RGPV, Bhopal December 2003)
Define and explain the terms MMF, Reluctance, Permeance, flux density and fringing.

(RGPV, Bhopal December 2003)
Find the value of resistance (R), if source current is 6 amp and source voltage is 66 V is shown
in Fig.1.98 (Pune University 2003) (Nagpur University, Winter 2002)

R 3Q

2Q

2Q

1=2 Amp

66V

Fig. 1.98
Determine a non-negative value of R such that the power consumed by the 2-Q resistor in the
Fig.1.99 is shown maximum. (Pune University 2003)(Engineering Services Examination 2003)

R
—MA\N
1Q
3Q 3Q
10 V= 5V =/ 2Q
3Q
Fig. 1.99

1.

OBJECTIVE TESTS -1

A 100 pA ammeter has an internal resistance
of 100 Q. For extending its range to measure
500 pA, the shunt required is of resistance

3. The open circuit impedance of a certain
length of a loss-less line is 100 . The short
circuit impedance of the same line is also

and R, is
(a) 3.077 Q to 3.636 Q
(b) 2.805 Q to 3.371 Q

(in ©Q 100 € The characteristic impedance of the
(a) 20.0 (b) 22.22 line is
(c) 25.0 (d) 50.0
(GATE 2001) (a) 100 2 Q (b) 50 Q
. Resistances R, and R, have, respectively,

. 100
nominal values of 10Q and 5€, and (©) —=Q (d) 100 Q
tolerances of + 5% and + 10%. The range \/5
of values for the parallel combination of R (ESE 2001)

The current in the given circuit with a
dependent voltage source is

a) 10A b) 12 A
(c) 3.237 Q to 3.678 Q gc; 14 A Ed; 16 A
(d) 3.192 Q to 3.435 Q (ESE 2001)

(GATE 2001)
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1Q
= F
2Vb +
+
24 V[ 4Q
A
4Q
Fig. 1.100

5. The value of resistance ‘R’ shown in the
given Fig. 1.101 is

60
4A
10V
o { 70 R
Fig. 1.101
(@) 35 Q ) 2.5 Q
©1Q (d) 45 Q
(ESE 2001)

6. For the circuit shown in the given Fig. 1.102
the current I is given by
4Q 20

AV

1—

6A 19§ (jw

Fig. 1.102
(a) 3 A )2 A
(c) 1 A (d) zero
(Pune University 2003) (ESE 2001)
7. The value of V in the circuit shown in the
given Fig. 1.103 is
(Mumbai University 2003)

3V
— +
1 T
3A 1Q 1Q I
Fig. 1.103
@1V b2V
(©3V (d) 4V

(GATE 2003) (ESE 2001)

8. In the circuit shown in Fig. 1.104, the value
of Vis 0, when I =4A. The value of I when

V=16V, is
(@) 6 A )8 A
() 10 A d 12 A

(GATE 2003) (ESE 2003)

2Q 2Q

Fig. 1.104

. The linear network as in Fig. 1.105 has only

resistors. If [[ = 8A and [, = 12 A; V is
found to be 80 V. V=0 when I; =-8A and
I, = 4A. Then the value of V when I, =1,
=10 A, is
T
I, ( E NETWORK
Fig. 1.105
(a) 25V
(c) 75V

K

(b) 50
() 100 V
(GATE 2003) (ESE 2003)

10. In Fig. 1.106, the value of R is

AAVAVAS
RQ
14Q 1Q
q ) 5V
0V
wOVC? e (?40\’
Fig. 1.106

(a) 10 Q (b) 18 Q
(c) 24 Q (d) 12 Q

11.

10V

12.

(GATE 2003)
In the circuit shown in Fig. 1.107, the switch
S is closed at time t = 0. The voltage across
the inductance at t = 0+, is

3Q
—
S 4F
b 40 4H
40
Fig. 1107
@2V () 4V
(©) -6V @ 8V

(GATE 2003)
The rms value of the resultant current in a
wire which carries a dc current of 10 A and
a sinusoidal alternating current of peak value
20 A is
(a) 14.1 A
(c) 224 A

(b) 173 A
(d) 30.0 A
(GATE 2004)
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2.1. Electric Circuits and Network Theorems

There are certain theorems, which when applied to the solutions of electric networks, wither
simplify the network itself or render their analytical solution very easy. These theorems can also be
applied to an a.c. system, with the only difference that impedances replace the ohmic resistance of
d.c. system. Different electric circuits (according to their properties) are defined below :

1. Circuit. Acircuitis a closed conducting path through which an electric current either flows
or is intended flow.

2. Parameters. The various elements of an electric circuit are called its parameters like resis-
tance, inductance and capacitance. These parameters may be lumped or distributed.

3. Liner Circuit. Alinear circuit is one whose parameters are constant i.e. they do not change
with voltage or current.

Non-linear Circuit. It is that circuit whose parameters change with voltage or current.

5. Bilateral Circuit. Abilateral circuit is one whose properties or characteristics are the same
in either direction. The usual transmission line is bilateral, because it can be made to per-
form its function equally well in either direction.

6. Unilateral Circuit. It is that circuit whose properties or characteristics change with the
direction of its operation. A diode rectifier is a unilateral circuit, because it cannot perform
rectification in both directions.

7. Electric Network. A combination of various electric elements, connected in any manner
whatsoever, is called an electric network.

Passive Network is one which contains no source of e.m.f. in it.
9. Active Network is one which contains one or more than one source of e.m.f.
10. Node isa junction in a circuit where two or more circuit elements are connected together.
11. Branch is that part of a network which lies between two junctions.

12. Loop. Itisaclose path in a cir-
cuit in which no element or node |

. conductor

is encountered more than once. — ground
13. Mesh. Itis a loop that contains —— switch

no other loop within it. For ex- — |[|— battery

ample, the circuit of Fig. 2.1 (a) —| | caacitor

has even branches, six nodes, — N\ — fuse

three loops and two meshes
whereas the circuit of Fig. 2.1 (b)
has four branches, two nodes, six
loops and three meshes.

It should be noted that, unless stated
otherwise, an electric network would be
assumed passive in the following treat-
ment.

We will now discuss the various net-
work theorems which are of great help in
solving complicated networks. Inciden-
tally, a network is said to be completely

AN\ resistor
—\ X : rheostat (variable resistor)

_<:>_ galvanometer
= : )— ammeter
__(>_ voltmeter

Standard symbols
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solved or analyzed when all voltages and all currents in its different elements are determined.

(b)
Fig. 2.1

There are two general approaches to network analysis :
(i) Direct Method

Here, the network is left in its original form while determining its different voltages and currents.
Such methods are usually restricted to fairly simple circuits and include Kirchhoff’s laws, Loop
analysis, Nodal analysis, superposition theorem, Compensation theorem and Reciprocity theorem
etc.

(if) Network Reduction Method

Here, the original network is converted into a much simpler equivalent circuit for rapid calcula-
tion of different quantities. This method can be applied to simple as well as complicated networks.
Examples of this method are : Delta/Star and Star/Delta conversions.
Thevenin’s theorem and Norton’s Theorem etc.

2.2. Kirchhoff’s Laws *

These laws are more comprehensive than Ohm’s law and are
used for solving electrical networks which may not be readily solved
by the latter. Kirchhoff’s laws, two in number, are particularly useful
(a) in determining the equivalent resistance of a complicated net-
work of conductors and (b) for calculating the currents flowing in the
various conductors. The two-laws are :

1. Kirchhoff’s Point Law or Current Law (KCL)

It states as follows :

in any electrical network, the algebraic sum of the currents meeting at a point (or junction) is
zero.

Put in another way, it simply means that the total current leaving a junction is equal to the total
current entering that junction. It is obviously true because there is no accumulation of charge at the
junction of the network.

Consider the case of a few conductors meeting at a point A as in Fig. 2.2 (a). Some conductors
have currents leading to point A, whereas some have currents leading away from point A. Assuming
the incoming currents to be positive and the outgoing currents negative, we have

|1 + (_Iz) + (_|3) + (+ |4) + (_|5) =0

or L+, =L, =l;—=l;=0 or L+1l,=L+I;+I

or incoming currents = outgoing currents

*  After Gustave Robert Kirchhoff (1824-1887), an outstanding German Physicist.

Kirchhoff
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Similarly, in Fig. 2.2 (b) for node A
I+ () + )+ () +(=1,)=0 or =L+ L+1,+1,
We can express the above conclusionthus: X 1=0 ....at a junction

(b)
Fig. 2.2

2. Kirchhoff’s Mesh Law or Voltage Law (KVL)
It states as follows :

The algebraic sum of the products of currents and resistances in each of the conductors in
any closed path (or mesh) in a network plus the algebraic sum of the e.m.fs. in that path is zero.

In other words, YIR+Xemf. =0 ...round a mesh

It should be noted that algebraic sum is the sum which takes into account the polarities of the
voltage drops.

Node
. (b) Node (o0 + Vs _ Loop
(a) Rs Lgop L,
~ '
_____ ’ - V Lf
I l, 6
A
: ; :
|
V, = § Il §V8
| - =
1
V7
+
Sum currents IN Sum Voltages (counterclockwise order) :
Branch Iy +1;,+13=0amps Vi + Vg +V, + V=0 volts
Sum currents OUT Sum Voltages (Clockwise order):
Kirchhoff’s analysis for the _
=15 TOT HTE =1, = 1,-1;=0amps -V - V-V, + V=0 volts
above mesh (a) is given in . : 5 "8 7776
(b) and (¢) Kirchhoff’s Current Law Kirchhoff's Voltage Law

The basis of this law is this : If we start from a particular junction and go round the mesh till we
come back to the starting point, then we must be at the same potential with which we started. Hence,
it means that all the sources of e.m.f. met on the way must necessarily be equal to the voltage drops in
the resistances, every voltage being given its proper sign, plus or minus.

2.3. Determination of Voltage Sign

In applying Kirchhoff’s laws to specific problems, particular attention should be paid to the
algebraic signs of voltage drops and e.m.fs., otherwise results will come out to be wrong. Following
sign conventions is suggested :

(a) Sign of Battery E.M.F.

A rise in voltage should be given a + ve sign and a fall in voltage a -ve sign. Keeping this in
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mind, it is clear that as we go from the -ve terminal of a battery to its +ve terminal (Fig. 2.3), there is
a rise in potential, hence this voltage should be given a + ve sign. If, on the other hand, we go from
+ve terminal to -ve terminal, then there is a fall in potential, hence this voltage should be preceded

current current
E B 4 £ B 4 \ B A v B
A - + — _ +
— — —R> motion —— motion
Rise in Fall in Fall in Rise in
Voltage Voltage Voltage Voltage
+E -E -V=-IR +V=+IR
Fig. 2.3 Fig. 2.4

by a wve sign. It is important to note that the sign of the battery e.m.f. is independent of the
direction of the current through that branch.

(b) Sign of IR Drop

Now, take the case of a resistor (Fig. 2.4). If we go through a resistor in the same direction as the
current, then there is a fall in potential because current flows from a higher to a lower potential.
Hence, this voltage fall should be taken -ve. However, if we go in a direction opposite to that of the
current, then there is a rise in voltage. Hence, this voltage rise should be given a positive sign.

It is clear that the sign of voltage drop across a resistor depends on the direction of current
through that resistor but is independent of the polarity of any other source of e.m.f. in the circuit
under consideration.

Consider the closed path ABCDA in Fig. 2.5. As we travel around the mesh in the clockwise
direction, different voltage drops will have the following

signs :
I,R, is —ve (fall in potential) NaA Lk MR/\l/\F B~
I,R, is —ve (fall in potential) L P
I,R; is +ve (rise in potential) ’Q}) R,
I,R, is —ve (fall in potential) R, §
E, is —ve (fall in potential) $ L
E, is +ve (rise in potential) E AT Y —E,
Using Kirchhoff’s voltage law, we get T
—1iR; =1,Ry =1;Rs ~I,R, -, + E; = 0 D /\/\1{\;\/\ L C

or 1R, + LR, -I,R; + I,R, = E, -E,
Fig. 2.5
2.4. Assumed Direction of Current

In applying Kirchhoff’s laws to electrical networks, the question of assuming proper direction of
current usually arises. The direction of current flow may be assumed either clockwise or anticlockwise.
If the assumed direction of current is not the actual direction, then on solving the quesiton, this
current will be found to have a minus sign. If the answer is positive, then assumed direction is the
same as actual direction (Example 2.10). However, the important point is that once a particular
direction has been assumed, the same should be used throughout the solution of the question.

Note. It should be noted that Kirchhoff’s laws are applicable both to d.c. and a.c. voltages and
currents. However, in the case of alternating currents and voltages, any e.m.f. of self-inductance or
that existing across a capacitor should be also taken into account (See Example 2.14).
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2.5. Solving Simultaneous Equations

Electric circuit analysis with the help of Kirchhoff’s laws usually involves solution of two or
three simultaneous equations. These equations can be solved by a systematic elimination of the
variables but the procedure is often lengthy and laborious and hence more liable to error. Determi-
nants and Cramer’s rule provide a simple and straight method for solving network equations through
manipulation of their coefficients. Of course, if the number of simultaneous equations happens to be
very large, use of a digital computer can make the task easy.

2.6. Determinants
a b
c d
it contains two rows (ab and cd) and two columns (ac and bd). The numbers a, b, ¢ and d are called
the elements or constituents of the determinant. Their number in the present case is 22 =4,

The evaluation of such a determinant is accomplished by cross-multiplicaiton is illustrated
below :

is called a determinant of the second order (or 2 x 2 determinant) because

The symbol

A = = ad —bc

a b
ch
The above result for a second order determinant can be remembered as
upper left times lower right minus upper right times lower left

The symbol 212 tk)); ((::; represents a third-order determinant having 32=9elements. It may
a; by ¢
be evaluated (or expanded) as under :
1. Multiply each element of the first row (or alternatively, first column) by a determinant ob-
tained by omitting the row and column in which it occurs. (It is called minor determinant or
just minor as shown in Fig. 2.6).

y 2 o
:H 124 | €1 1 bl cl 1
l}/ C
2 ’
2 2 b3 C3 || n‘ C 7
Minor of a, Minor of a, Minor of a,
Fig. 2.6

2. Prefix + and —sing alternately to the terms so obtained.

3. Add up all these terms together to get the value of the given determinant.
Considering the first column, minors of various elements are as shown in Fig. 2.6.
Expanding in terms of first column, we get

b, ¢ G b ¢
b§ Ci by ¢ "% b, ¢,

a, (b,cy —bgyc,) —a, (b,c5 —bgey) + a5 (b, —b,cy) (i)

A

a; -
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Expanding in terms of the first row, we get

b, ¢,

a G
by ¢,

a8 C3

a, b
+ 2 2

“la, b
a; (byCy —bgCy) —by (8,C5 —a5C,) + € (8,05 —agh,)
which will be found to be the same as above.

A

a;

7 -3 -4
Example 2.1. Evaluate the determinant | -3 6 -2
-4 -2 11
Solution. We will expand with the help of 1st column.
- 6 -2 -3 -4 -3 -4
D = 7‘—2 11|~ 2 11‘*“4) 6 —2‘

7[(6 x 11) (-2 x —=2)] + 3 [(-3 x 11) —(-4 x —2)] -4 [(-3 x —2) —(-4 x 6)]
=7 (66 —4) + 3 (—33 —8) —4 (6 + 24) = 191

2.7. Solving Equations with Two Unknowns

Suppose the two given simultaneous equations are
ax+hby =c
dx+ey = f
Here, the two unknown are x and y, a, b, d and e are coefficients of these unknowns whereas c and

f are constants. The procedure for solving these equations by the method of determinants is as fol-
lows :

1. Write the two equations in the matrix form as [g 2} [ﬂ = [ﬂ

2. The common determinant is given as A = [3 2} =ae—bhd
3. For finding the determinant for x, replace the co- c
efficients of x in the original matrix by the con- 41 = ‘ f e ‘ = (ce —bf)
stants so that we get determinant A, given by
4. For finding the determinant for y, replace coeffi-
cients of y by the constants so that we get Ay =

5. Apply Cramer’s rule to get the value of x and y
Ay ce—bf and A, af —cd

a ¢C

q = (af —d)

A ae—hd Y="A "ae—nbd

Example 2.2. Solve the following two simultaneous equations by the method of determinants :

4i, -3i, = 1
3i, —5i, = 2
Solution. The matrix form of the equations is 4 -3)ih_|1
3 -5]|i,|7[2
A= |5 :g‘:(4x—5)—(—3><3):—11
A= |5 :§‘=(1><-5)-(—3><2)=1
A, = |5 21‘=(4><2)—(1><3)=5
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i_ﬁzl_l.i_ﬁ 5
1 A =117 11" %2 A

2.8. Solving Equations With Three Unknowns

Let the three simultaneous equations be as under :
ax+by+cz = d
ex+fy+gz = h
X+ ky+lz m

The above equations can be put in the matrix form as under :

SRR

The value of common determinant is given by

a b c
A =le f g|=a(fl-—gk)—e(l-ck)+ jbg-cf)
j k1

The determinant for x can be found by replacing coefficients of x in the original matrix by the
constants.

=d (fl - gk) — h(bl - ck) + m(bg — cf)

N =T

C
A, = EIJ

A, =

d
h
m
Similarly, determinant for y is given by replacing coefficients of y with the three constants.
a
e =a (hl —mg) —e(dl = mc) + j (dg — hc)
J

In the same way, determinant for z is given by

a b d
A, = | e f h|=a(fm-hk)-e(m-dk)+ j(bh-df)
j k m
3 —_— ﬁ —ﬁ —ﬁ
As per Cramer’s rule X = A’ y= A,z— A

Example 2.3. Solve the following three simultaneous equations by the use of determinants and
Cramer’s rule

i, +3i,+4i; = 14
iy +2i,+i; =7
2ip +i, +2i; = 2
Solution. As explained earlier, the above equations can be written in the form

1 -

13 4

A=|12 1|=14-1)-16-4)+((3-8=-9
2 1 2
14 3 4

A = {7 2 1}=14(4—1)—7(6—4)+2(3—8)=18
2 12
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114 4

Ay = |1 7 1|=1(14-2)-1(28-8)+2 (14— 28)=—36
2 2 2
13 14

A, = |1 2 7|=1(4-7)-1(6-14)+2(21-28)=-9
2 1 2

According to Cramer’s rule,

= ;|2—2—3§—4A;i3—3—991A

|l—_11_89—2A

Example 2.4. What is the voltage V, across the open switch in the circuit of Fig. 2.7 ?

Solution. We will apply KVL to find V.. Starting from point A in the clockwise direction and
using the sign convention given in Art. 2.3, we have

.\ I /‘ A B C
Nosov  3v ) _
| | L
b1 |4 VSR 16A
+
N Q 10A
O_
20V Ve oV L %3
ot AV
10V
|
C I B
4A
/ \ AN\—=
/ \. F 2 E D
Fig. 2.7 Fig. 2.8

+V+10-20-50+30 =0 .. V,=30V
Example 2.5. Find the unknown voltage V, in the circuit of Fig. 2.8.

Solution. Initially, one may not be clear regarding the solution of this question. One may think
of Kirchhoff’s laws or mesh analysis etc. But a little thought will show that the question can be solved
by the simple application of Kirchhoff’s voltage law. Taking the outer closed loop ABCDEFA and
applying KVL to it, we get

-16x3-4x2+40-V,=0; . V,=-16V

The negative sign shows there is a fall in potential.

Example 2.6. Using Kirchhoff’s Current Law and Ohm’s Law, find the magnitude and polarity
of voltge V in Fig. 2.9 (a).
Directions of the two current
A 1 4
sources are as shown. L

Solution. Letusarbitrarily
choose the directions of I, l,and 22 330A(H) (Dga2Qs (Y (DA
I; and polarity of V as shown in
Fig. 2.9.(b). We will use the sign
convention for currents as given (@
in Art. 2.3. Applying KCL to
node A, we have Fig. 2.9

®)
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—1,+30+1,-1,-8 = 0

or =+ 1, =22 ()
Applying Ohm’s law to the three resistive branches in Fig. 2.9 (b), we have
_V Vv \ .
I, = > I3:Z' IZ:_E (Please note the —ve sign.)

Substituting these values in (i) above, we get

V_(ZV |V _ _
2 6 2 =22 or V=24V

I, = VI2=2412=12A,1,=-24/6 =-4 A, 1;=24/4=6 A

The negative sign of |, indicates that actual direction of |ts flow is opposite to that shown in Fig.
2.9 (b). Actually, 1,, flows from A to B and not from B to A as shown.

Incidentally, it may be noted that all currents are outgoing except 30A which is an incoming
current.
Example 2.7. For the circuit shown in Fig. 2.10, find V. and V.
(F.Y. Engg. Pune Univ.)

Solution. Consider the two battery circuits of Fig. 2.10 separately. Current in the 20 V battery
circuit ABCD is 20 (6 +5+9) = 1A. Similarly,

current in the 40 V battery curcuit EFGH is = 4 6 B E ’\/\8/\/‘ F
40/(5 + 8 + 7) = 2A. \oltage drops over differ- WW
ent resistors can be found by using Ohm’s law.

For finding V. i.e. voltage of point Cwith | 10V |
respect to point EC,Ewe will start from pointE T 20V 5 % ;5 AU =
and go to C via points H and B. We will find
the algebraic sum of the voltage drops met on 9 7
the way from point E to C. Sign conventionof  p M C H VAN G

the voltage drops and battery e.m.fs. would be
the same as discussed in Art. 2.3.

Ve = €5%x2)+ (10) (5 x 1) = -5V
The negative sign shows that point C is negative with respect to point E.
Vig = (7Tx2)+(10) +(6x1)=30V.
The positive sign shows that point A is at a positive
potential of 30 V with respect to point G. A

Fig. 2.10

Example 2.8. Determine the currents in the unbal-
anced bridge circuit of Fig. 2.11 below. Also, determine the
p.d. across BD and the resistance from B to D.

Solution. Assumed current directions are as shown in D
Fig. 2.11.
Applying Kirchhoff’s Second Law to circuit DACD,
we get A(xty) (x+y) Y
—X-4z+2y=00rx-2y+4z=0 (1
y y oY 2V, 12
Ak

Circuit ABCA gives
—2(x-2)+3(y+2z)+4z = 0o0r2x-3y-92=0
(2) Fig. 2.11
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Circuit DABED gives

X-2(x-2) -2 (x+y)+2 = 0orb5x+2y-2z=2 ..(3)
Multiplying (1) by 2 and subtracting (2) from it, we get
-y+17z = 0 (%)
Similarly, multiplying (1) by 5 and subtracitng (3) from it, we have
12y + 22z = -2 or -6y +11lz=-1 ..(5)

Eliminating y from (4) and (5), we have 91z=10rz=1/91 A
From (4); y =17/91 A. Putting these values of y and z in (1), we get x = 30/91 A
Current in DA =x=30/91 A CurrentinDC=y=17/91 A

_ _ 0 1 29
Current in AB =X Z 9 o1 91
_ _ 7 1 18
Current in CB=Y 2o o1 a1
_ o _ 30 17 47
Current in external circuit =X Y 9 o1 a”

CurrentinAC = z=1/91 A
Internal voltage drop inthe cell = 2 (x +y) =2 x 47/91 = 94/91 VV
9 88
91 91
Equivalent resistance of the bridge between points D and B
_  p.d. between points B and D 88/91 _ 88
" current between points B and D T 47/91 " 47~ 1.87 Q(approx)
Solution By Determinants
The matrix from the three simultaneous equations (1), (2) and (3) is

~.P.D. across points Dand B = 2 V *

1 -2 41x] [o
2 -3 —9||yl=|0
5 2 -2]|z] |2
1 -2 4]
A=|2 -3 —9|=1(6+18)-2(4—8)+5(18+12) =182
5 2 -2
0 -2 4]
A, = [0 -3 —9|=0(6+18)—0(4—8)+2(18+12) =60
2 2 -2
10 4 1 -2 0
A, = |2 0 —9|=344,=[2 -3 0|=2
5 2 -2 5 2 2
1 60 30 34 17 2 1
.2 oY 18 ™% 1 ol

Example 2.9. Determine the branch currents in the network of Fig. 2.12 when the value of each
branch resistance is one ohm. (Elect. Technology, Allahabad Univ. 1992)
Solution. Let the current directions be as shown in Fig. 2.12.
Apply Kirchhoff’s Second law to the closed circuit ABDA, we get
5-x-z+y =0 or x-y+z=5 0]

*  P.D. between D and B = drop across DC + drop across CB =2 x 17/91 + 3 x 18/91 = 88/91 V.
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Similarly, circuit BCDB gives

—-X-2)+5+(y+2)+z=0 A
or x-y-3z =5 (i) 1Q 1Q
Lastly, from circuit ADCEA, we get zy

Y=y +2) +10-(x +y)= 0 N4 A
or Xx+3y+z = 10 (i) X5V (x-z)
From Eq. (i) and (ii), we get, z=0 A y §1 Q C
Substituting z = 0 either in Eq. (i) or (ii) and in Eq.

(iii), we get
X-y=5 (iv) 1Q 1Q
_ x+3_y= 10 (V) )

Subtracting Eq. (v) from (iv), we get
_4y=-5 or y=5/4=124A 16+ b ) Y
Eq. (iv) givesx=25/4 A=6.25 A ’\IW E| 10V
Current in branch AB = current in branch BC =6.25 A v
Current in branch BD = 0; current in branch Fig. 2.12

AD = current in branch DC = 1.25 A; current in branch CEA=6.25+1.25=7.5 A.

Example 2.10. State and explain Kirchhoff’s laws. Determine the current supplied by the bat-
tery in the circuit shown in Fig. 2.12 A. (Elect. Engg. I, Bombay Univ.)

Solution. Let the current distribution be as shown in the figure. Considering the close circuit
ABCA and applying Kirchhoff’s Second Law, we have

—100x —300z + 500y = 0 Z
or X-by+3z =0 (D)
Similarly, considering the closed loop BCDB, we
have G-=)
~300z —100(y + 2) + 500(x —z) = 0 . <
or 5x =y =9z = 0 ..(ii)

Taking the circuit ABDEA, we get

—100x —500(x —z) + 100 —100(x +y) =0
or 7x+y-bz =1 ..(iii)
The value of x, y and z may be found by solving

the above three simultaneous equations or by the
method of determinants as given below :

Putting the above three equations in the matrix form, we have

S

-5 3 0 -5 3
-1 -9]=240,A)=|0 -1 -9|=48
1 -5 1 1 -5

0 3 1 -50
0 -9(=24A;=|5 -1 0|=24
1

o+=z)
(x+32)
E; 10V
|

Fig. 2.12 A

[EEN

>
1
NOlR NUlRe NO

-5 7 11
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48 1, . 24 1, 24 1

20 50 Y 220 1077 240 10
Current supplied by the battery isx +y = 1/5 + 1/10 = 3/10 A.

Example 2.11. Two batteries A and B are
connected in parallel and load of 10 Qs connected 12V 2
across their terminals. Ahasane.m.f. of 12V and an _ﬁ_{ | AN/
internal resistance of 2 Q ; B has an e.m.f. of 8 Vand 4 B
an internal resistance of 1 Q& Use Kirchhoff’s laws to 9
determine the values and directions of the currents
flowing in each of the batteries and in the external
resistance. Also determine the potential difference y
across the external resistance.
: (x+y) 10 E
(F.Y. Engg. Pune Univ.) ~< AN
Solution. Applying KVL to the closed circuit Fig. 2.13
ABCDA of Fig. 2.13, we get
-12+2x-1y+8 =0 or 2x-y=4 (1)
Similarly, from the closed circuit ADCEA, we get
-8+1y+10(x+y) =0 or 10x+1ly=38 (i)
From Eq. (i) and (ii), we get
x=1625Aandy =-0.75 A
The negative sign of y shows that the current is flowing into the 8-V battery and not out of it. In
other words, it is a charging current and not a discharging current.
Current flowing in the external resistance = x +y = 1.625 -0.75 = 0.875 A
P.D. across the external resistance = 10 x 0.875=8.75V
Note. To confirm the correctness of the answer, the simple check is to find the value of the
external voltage available across point A and C with the help of the two parallel branches. If the value
of the voltage comes out to be the same, then the answer is correct, otherwise it is wrong. For
example, Vg, = -2 x 1.625 + 12 = 8.75 V. From the second branch V., =1 x 0.75 + 8 =8.75 V.
Hence, the answer found above is correct.

Example 2.12. Determine the current x in the 4-Qresistance of the circuit shown in Fig. 2.13 (A).

Solution. The given circuit is redrawn with assumed distribution of currents in Fig. 2.13 A (b).
Applying KVL to different closed loops, we get

/iﬁﬁ Vv F

[}
V<

0+6) 4 2 (y+z+6)
> VVV > B

6A §10 ovT 2§ Q 6A 210 “Tiov
| 3 1 Az 3
AN M E—> =\ ANNNN——>——C
i (x-y)  (xy-6) D (xyz-6) ¢y
|24 A\ /\?\/\, XA | 24V /\/3\/\ ;
| |
(a) (b)

Fig. 2.13 A
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Circuit EFADE

-2y +10z+ (x-y-6) =0 or x-3y+10z=6 ()
Circuit ABCDA

2(y+z+6)-10+3 (x-y-z-6)-10z=0 or 3x-5y-14z=140 (i)
Circuit EDCGE

-(Xx -y —6) -3(x -y -z -6) —4x +24 =0 or 8x -4y -3z =48 (D)

From above equations we get x =4.1 A

Example 2.13. Applying Kirchhoff’s
laws to different loops in Fig. 2.14, find the

30V_ -15V_
values of V, and V,,. s e
Solution. Starting from point A and L .

applying Kirchhoff’s voltage law to loop

No.3, we get + + +
~V,+5 =0 or V;=5V 10V ] : [ A |::|V2

Starting from point A and applying

Kirchhoff’s voltage law to loop No. 1, we —

get ’ P Ae L %
10-30-V, +5=0o0r V, =15V @
The negative sign of V, denotes that its

polarity is opposite to that shown in the

figure. +5V -

t Starting from point B in loop No. 3, we Fig. 2.1
ge

—(-15) -V, + (=15 =0 or V,=0
Example 2.14. In the network of Fig. 2.15, the different currents and voltages are as under :

i,= 5e %, i,=3sintand v, = 4e -
Using KCL, find voltage v,.

Solution. According to KCL, the algebraic sum of the currents meet-
ing at juncion A is zero i.e.

i+, +ig+(-,) =0
ip+i,+ig—i, =0 (1)
Now, current through a capacitor is given by i = C dv/dt
Co_ dvy 2d(4e ®
s = Cq (dt :
Substituting this value in Eq (i) above, we get
i, +5e —16e ' —3sint=0

2
16e Fig. 2.15

or ip = 3sint+ 11e7
The voltage v, developed across the coil is
di . -
v, = Ld—|t1:4.%(3smt+lle Zt)

4 (3 cost —22e’2t) =12 cos t —88e

Example 2.15. In the network shown in Fig. 2.16, v, = 4V, v, = 4 cos 2t and i = 2™,
Determine i,
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Solution. Applying KVL to closed mesh ABCDA, we get
-V, =V, +Vvz+v, =0

_ di, _~d —t3
Now vy = E—&E(Ze )
EPRTE
-4 -v, —4¢™B + 4 cos 2t= 0
or v, =4cos 2t —4e* —4
A dv d -3
Now, i, = C—2=8=(4cos2t—4e " -4
2 at S )

i 8(—83in 2t+%e‘t’3):—64sin 2t+3—32e‘t’3

Example 2.16. Use nodal analysis to determine the voltage across 5 Q resistance and the

current in the 12 V source. [Bombay University 2001]
9A /9‘-*\
& .
40 20 ! s}; 5Q
Al 29 B3Q 1 AL MWA—s-WA—3C
: + 4Q :
4Q s g 20Q
100 Q
h 100 Q §20 Q 3 A §
- (¢}
Fig. 2.17 (a) Fig. 2.17 (b)

Solution. Transform the 12-volt and 4-ohm resistor into current-source and parallel resistor.

Mark the nodes O, A, B and C on the diagram. Self-and mutual conductance terms are to be
wirtten down next.

AtA G, =1/4+1/2+1/4=1mho
AtB, G, = 1/2 + 1/5 + 1/100 = 0.71 mho
AtC, G, =1/4 + 1/5 + 1/20 = 0/50 mho
Between A and B, G, = 0.5 mho,
Between B and C, G, = 0.2 mho,
Between A and C, G, = 0.25 mho.

Current Source matrix : At node A, 3 amp incoming and 9 amp outgoing currents give a net
outgoing current of 6 amp. At node C, incoming current = 9 amp. At node B, no current source is

9
The potentials of three nodes to be found are : V,, Vg, V¢
1 -05 -025(|V,| (-6
-05 071 -020||Vg|=| O
-025 -0.20 0.5]| Ve 9

-6
connected. Hence, the current-source matrix is : { O}
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For evaluating V,, Vg, V, following steps are required.

1 -05 -025
A=| -05 071 -0.20|=1x(0.710.5—0.04) + 0.5 (- 0.25 — 0.05) — 0.25 (0.1 + 0.71x 0.25)
~025 -020 05

0.315 —0.15 —0.069375 = 0.095625

-6 -05 -025
A, = |-05 071 -0.20=+0.6075
9 -020 +05
1 -6 -025
A, = | —-05 0 -020|=1125
-025 9 0.0
1 -05 -6
A, = | =05 071 0[=22475
-025 -020 9

V, = A,/A =+0/6075/0.095625 = 6.353 volts
Vg = A/A = 1.125/0.095625 = 11.765 volts
Ve = AJA = 2.475/0.95625 = 25.882 volts
Hence, voltage across 5-ohm resistor = V. -V = 14.18 volts. Obviously. B is positive w.r. to A.
From these node potentials, current through 100-ohm resistor is 0.118 amp; (i) current through 20
ohm resistor is 1.294 amp.
(if) Current through 5-ohm resistor = 14.18/5 = 2.836 amp.
(iii) Current through 4-ohm resistor between C and A = 19.53/4 = 4.883 amp
Check : Apply KCL at node C
Incoming current = 9 amp, from the source.
Outgoing currents as calculated in (i), (ii) and (iii) above = 1.294 + 2.836 + 4.883 = 9 amp
(iv) Current through 2-ohm resistor = (Vg —V,)/2 = 2.706 amp, from B to A.
(v) Current in A-O branch = 6.353/4 = 1.588 amp

4Q
———WWW—<¢— 4.883 amp
V,=6.353 VW WA-4¢—2.706 amp
Node A A 2Q
A 1.412 amp
1.588 amp
+
@ 4Q 4Q
3A
D
0 12V
(0]
Fig. 2.17 (c) Equivalent Fig. 2.17 (d) Actual elements

In Fig. 2.17 (c), the transformed equivalent circuit is shown. The 3-amp current source (O to A)
and the current of 1.588 amp in A-O branch have to be interpreted with reference to the actual circuit,
shown in Fig. 2.17 (d), where in a node D exists at a potential of 12 volts w.r. to the reference node.
The 4-ohm resistor between D and A carries an upward current of {(12 —6.353)/4 =} 1.412 amp,
which is nothing but 3 amp into the node and 1.588 amp away from the node, as in Fig. 2.17 (c), at
node A. The current in the 12-V source is thus 1.412 amp.

Check. KCL at node A should give a check that incoming currents should add-up to 9 amp.
1.412 +2.706 + 4.883 = 9amp
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Example 2.17. Determine current in 5-Q resistor by any one method.
(Bombay University 2001)

[ |10V
B[ '+
i
%j il %209 ’ %39
-8V
2Q
A WA WV C
13
j= b
12V
Fig. 2.18 (a)

Soltuion (A). Matrix-method for Mesh analysis can be used. Mark three loops as shown, in Fig.
2.18 (a). Resistance-matrix should be evaluated for current in 5-ohm resistor. Only, i, is to be found.

R;1=3,R,»=6,Ry3=9 Rp,=1,Ry;3=2,R;3=2

\oltage-source will be a column matrix with entries serially as : + 8 \olts, + 10 Wolts, + 12 Volts.

3 -1 -2
A=|-1 6 -2[=3x(54-4)+1(-9-4)-2(2+12) =109
-2 -2 9
3 -1 8
A, = | -1 6 10|=396
~2 -2 12

i; = Ag/A=396/109 = 3.633 amp.
Solution (B). Alternatively, Thevenin’s theorem can be applied.
For this, detach the 5-ohm resistor from its position, Evaluate V;,, at the terminals X-Y in Fig.
2.18 (b) and de-activating the source, calculate the value of Ry, as shown in Fig. 2.18 (c).

B —||+
B Tov
== i P %39
1Q e a 1Q
3Q I 3
A ANMAN 2Q
D c A o
2Q D
X Y

\ +|i— Viu

R
Fig. 2.18 (b) Fig. 2.18 (c)
By observation, Resistance-elements of 2 x 2 matrix have to be noted.
Raa = 3’ Rbb = 5' Rab =1
3 -1f]i, +8
-1 6 || +10
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3 -1|_ _
‘ ‘ 1 6‘—58/17—3.412amp

8 -1
10 6
3 81, 17)=3817=2.2353

3 8ean- amp

Vyy = Vqy =12+ 2i, + 2i, = 23.3 Volts,

with y positive w.r. to X. Ry, can be evaluated from
Fig. 2.18 (c), after transforming delta configuration at
nodes B-D-C to its equivalent star, as shown in Fig.
2.18 (d)

Further simplification results into :
Ryy = Rqy = 1.412 ohms
Hence, Load Current =V /(R +R,) =23.3/6.412

= 3.643 amp.
Fig. 218 (d) This agrees with result obtained earlier.

Example 2.18 (a). Determine the voltages 1 and 2 of the network in Fig. 2.19 (a) by nodal
analysis. (Bombay University, 2001)

3 I—\MMI T S

2Q
) ha e
| AJ 2A
‘ o)
Fig. 2.19 (a)

Solution. Write the conductance matrix for the network, with nodes numbered as 1, 2, 4 as
shown.

1+05+0.5=2mho, g,,=1+0.5=1.5mho,

o
flary
=

1

033 = 1mho, g,, =0.5mho, g, =0, 9,53 =1mho

2 -05 -1 0 -05 -1
A=1]-05 15 0|=125 A/ =|2 15 0(|=25
-1 0 1.0 1 0 1
2 0 -1
A, = |-05 2 0]=25
-1 110

This gives V, = A)/A = 2.50/1.25 = 2 Volts
And V, = A,/A = 2.50/1.25 = 2 \olts

It means that the 2-ohm resistor between nodes 1 and 2 does not carry current.

Example 2.18 (b). In the circuit of Fig. 2.19 (b), find current through 1-Q resistor using both
THEVENIN’s theorem and SUPERPOSITION theorem.
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Fig. 2.19 (b)
Solution. (i) By Thevenin’s Theorem :
1A
AN 20 30
2 QU 3Q ¢ D
Ce D A
i 4A
— A <T 3A Ry
4V B I B T
O
Fig. 2.19 (c) Fig. 2.19 (d)

Take Vg =0. ThenV, =4 +8=12, since from D to C, a current of 4 Amust flow, as shown in Fig.
2.19 (b), applying KCL ot Node D.

Vi = Vg =12 volts q .
From Fig. 2.19 (d), Ryy = 2ohms 20
IL = 12/(2+1)=4amp C9 30
(if) By Superposition Theorem : One source acts at a time. ks o
Current through A-B (1 ohm) is to be calculated due to each source 4VT- 1Q o
and finally all these contributions added. L
Due to 4-V source : 43¢9B

1-ohm resistor carries a current of 4/3 amp from A to B, as Fig_'2_19 (€). 4-V Source acts
shown in Fig. 2.19 (e).

1A

\_/
—0 o
2Q 3Q
C+—MVMWWW WWw D C WWW VWWWW D
2Q A 3Q
A
) ; T A
§ 10 1Q
B
2 A
23AYB [ .
Fig. 2.19 (f). 1-A Source acts Fig. 2.19 (g). 3-A Source acts

Due ot 1-A source : 2/3 Amp from A to B, as shown in Fig. 2.19 (f)
Due to 3-A source : 2 Amp from A to B as shown in Fig. 2.19 (g)
Total current = 4 amp from A to B.
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2.9. Independent and Dependent Sources

Those voltage or current sources, which do not depend on any other quantity in the circuit, are
called independent sources. An independent d.c. voltage source is shown in Fig. 2.20 (a) whereas a
time-varying voltage source is shown in Fig. 2.20 (b). The positive sign shows that terminal A is
positive with respect to terminal B. In other words, potential of terminal A is v volts higher than that
of terminal B.

—————————0A4 —04 ——04 ——04
+ +
O Ore (b QL
L ____ OB OB OB oY :
(a) (b) (c) (d)
Fig. 2.20
2 -05 -1 0 -05 -1
A, = |-05 15 0|=125 A/ =|2 15 0|=25
-1 0 1.0 1 0 1

Similarly, Fig. 2.20 (c) shows an ideal constant current source whereas Fig. 2.20 (d) depicts a
time-varying current source. The arrow shows the direction of flow of the current at any moment
under consideration.

A dependent voltage or current source is one which depends on some other quantity in the circuit
which may be either a voltage or a current. Such a source is represented by a diamond-shaped symbol
as shown in Fig. 2.21 so as not to confuse it with an independent source. There are four possible
dependent sources :

1. \oltage-dependent voltage source [Fig. 2.21 (a)]
2. Current-dependent voltage source [Fig. 2.21 (b)]
3. \oltage-dependent current source [Fig. 2.21 (c)]
4. Current-dependent current source [Fig. 2.21 (d)]

Such sources can also be either constant sources or time-varying sources. Such sources are often
met in electronic circuits. As seen above, the voltage or current source is dependent on the and is

+0 0 oO— o +to Q © Q
+ +
% av iy ri v T av : ‘T T Bi
-0 © o— | o) -0 o o— o
(a) (b) (c) (d)
Fig. 2.21

proportional to another current or voltage. The constants of proportionality are written as a, r, g and
B. The constants a and 3 have no unis, r has the unit of ohms and g has the unit of siemens.
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Independent sources actually exist as physical entities such as a battery, a d.c. generator and an
alternator etc. But dependent sources are parts of models that are used to represent electrical proper-
ties of electronic devices such as operational amplifiers and transistors etc.

Example 2.19. Using Kirchhoff’s current law, find the values of the currents i, and i, in the
circuit of Fig. 2.22 (a) which contains a current-dependent current source. All resistances are in
ohms.

Solution. Applying KCL to node A, we get
2-ip+4i,-i, =0 or -3ij+i,=2
By Ohm’s law, i, =v/3and i, = v/2
Substituting these values above, we get
=3(/3)+vl2 =2 or v=-4V
i, = 43 Aandi,=-42=-2A
The value of the dependent current source is = 4i, = 4 x (-4/3) = -16/3 A.

A A
° A

(a) (b)
Fig. 2.22

Since i, and i, come out to be negative, it means that they flow upwards as shown in Fig. 2.22(b)
and not downwards as presumed. Similarly, the current of the dependent source flows downwards as
shown in Fig. 2.22 (b). It may also be noted that the sum of the upwards currents equals that of the
downward currents.

Example 2.20. By applying Kirchhoff’s current law, obtain the values of v, i, and i, in the circuit
of Fig. 2.23 (a) which contains a voltage-dependent current source. Resistance values are in ohms.

Solution. Applying KCL to node A of the circuit, we get

2—ip+4v—i, =0 or ij+i,-4v=2
Now, i, =Vv/3 and i,=vi6

ViV g =2 o v=—2v

3 6 7
. i, -2 _4 16
= 27 A and i, 1 A and 4v 4 7 7 \%

4 4
h b I b
RAVAZN +

Q 2A 3 v 6 CDzA 3 Y Whoa 6

(a) (b)
Fig. 2.23
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Since i, and i, come out to be negative and value of current source is also negative, their direc-
tions of flow are opposite to those presumed in Fig. 2.23 (a). Actual current directions are shown in
Fig. 2.23 (b).

Example 2.21. Apply Kirchhoff’s voltage law, to find the values of current i and the voltage
drops v, and v, in the circuit of Fig. 2.24 which contains a current-dependent voltage source. What
is the voltage of the dependent source ? All resistance values are in ohms.

Solution. Applying KVL to the circuit of Fig. 2.24 and starting from point A, we get

v, +4i-v,+6 =0 or v,-4i+v,=6
Now, v, = 2i and v,=4i
2i —4i+4i =6 or i=3A
v, =2x3=6V and v,=4x3=12V

. 2 4 i
4 1 AAAN - < >+ B —AMA >
Y 4iv
+ 2A +

Fig. 2.24 Fig. 2.25

\oltage of the dependent source =4i=4x4=12V

Example 2.22. In the circuit shown in Fig. 2.25, apply KCL to find the value of i for the case
when (a)v=2V, (b)v=4V (c)v=6V. The resistor values are in ohms.

Solution. (a) When v =2V, current through 2 Qresistor which is connected in parallel with the
2 v source = 2/2 = 1A. Since the source currentis2 A, i=2-1=1A.
(b) When v = 4V, current through the 2Qresistor = 4/2 =2 A. Hencei=2-2=0A.

(c) Whenv =6V, current through the 2Qresistor = 6/2 = 3 A. Since current source can supply
only 2 A, the balance of 1 A is supplied by the voltage source. Hence, i = -1 A i.e. it flows in a
direction opposite to that shown in Fig. 2.25.

Example 2.23. In the circuit of Fig. 2.26, apply KCL i 4 b
to find the value of current i when (a) K = 2 (b) K = 3 and B . B
(c) K =4. Both resistances are in ohms. i h }
Solution. Since 6 Qand 3 Qresistors are connected in <> 6 g %3
parallel across the 24-V battery, i, = 24/6 = 4 A. B4y
Applying KCL to node A, we geti 4 +4K-8=0or
i=12 -4 K.
(@ WhenK=2,i=12-4x2=4A Fig. 2.26

(b) WhenK=3,i=12-4x3=0A
(c) WhenK=4,i=12-4x4=-4A
It means that current i flows in the opposite direciton.

Example 2.24. Find the current i and also the power and voltage of the dependent source in
Fig. 2.72 (a). All resistances are in ohms.
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Solution. The two current sources can be combined into a single source of 8 -6 =2 A. The two
parallel 4 Q resistances when combined have a value of 2 Q which, being in series with the 10 Q
resistance, gives the branch resistance of 10 + 2 = 12 Q This 12 Qresistance when combined with
the other 12 Qresistance gives a combination resistance of 6 Q The simplified circuit is shown in

Fig. 2.27 (b))
A
=

! 10
+ 84 0A 0.9
. 3 %12 09<T <D } 2A CD 3
- ’ 4 34
(a) (b)
Fig. 2.27

Applying KCL to node A, we get

09i+2-i-V/6 =0 or 06i=12-v

Alsov=3i .. 1=10/3A. Hence,v=10 V.

The power furnished by the current source =v x 0.9 i =10 x 0.9 (10/3) = 30 W.

Example 2.25. By using voltage-divider rule, calculate the voltages v, and vy in the network

shown in Fig. 2.28.

7

the series combination of 1, 2 and 3 Qre-

Solution. As seen, 12 V drop in over VA
3% 4

sistors. As per voltage-divider rule v, = drop
over3Q=12x3/6=6 V.

The voltage of the dependent source =

12x6=72V.
The voltage vy equals the drop across 8 -
Q resistor connected across the voltage
T2,
source of 72 V. +

Again using voltge-divider rule, drop

over 8 Qresistor = 72 x 8/12 =48 V.

Hence, v, = —48 V. The negative sign
has been given because positive and negative signs of
v, are actually opposite to those shown in Fig. 2.28.

y
Example 2.26. Use KCL to find the value of vin
the circuit of Fig. 2.29.

Solution. Letus start from ground and go to point
a and find the value of voltage v,. Obviously, 5 +v=
v, orv=v, -5. Applying KCL to point, we get

6 -2v+(5-v)ll=00r6-2 (v, -5+
G5-v)=0 or v,=7V

Hence, v=v,-5=7-5=2V. Since it turns out
to be positive, its sign as indicated in the figure is
correct.

6
4
v
+
$Z
Fig. 2.28
&
+ —
6A 45 +
® sv()
2V
ov
Fig. 2.29
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A —©+ B Example 2.27. (a) Basic Electric Circuits by Cunninghan.
Find the value of current i, supplied by the voltage-con-
trolled current source (VCCS) shown in Fig. 2.30.

v Solution. Applying KVL to the closed circuit ABCD,
we have -4 +8 -v; =0 .. v, =4V

The current supplied by VCCSis 10v, =10 x4 =40 A.
Since i, flows in an opposite direction to this current, hence
i, = —40 A.

Example 2.27. (b). Find the voltage drop v, across the
current-controlled voltage source (CCVS) shown in
Fig. 2.28.

Solution. Applying KCL to point A, we have 2 + 6 —i; =0 ori, =8 A.

Application of KVL to the closed circuit on the right hand side gives 5i, —v, =0 or v, =5
i;=5x8=40V.

8V i

<§4V VIJ[

L lOv1 =

L
—_—
>
<

Fig. 2.30

A=
S8
_ —+
Co=+v ™ > aev
—+ == 10 v,
7> &
Fig. 2.31 Fig. 2.32

Example 2.28. Find the values of i;, v, v, and v, in the network of Fig. 2.32 with its terminals
a and b open.

Solution. It is obvious that i, = 4 A. Applying KVL to the left-hand closed circuit, we get
-40+20-v; =0orv, =-20 V.

Similarly, applying KVL to the second closed loop, we get

v, =V, +4v, =50 =0orv,=5v, =50 = -5 x 20 -50 = -150 V

Again applying KVL to the right-hand side circuit containing v, we get

50 —4v, -10v,, =0 or v, =50-4(-20) -10 =120 V

Example 2.29 (a). Find the current i in the circuit of Fig. 2.33. All resistances are in ohms.

Solution. The equivalent resitance of the two parallel paths across pointais 3| (4 +2) =2 Q
Now, applying KVL to the closed loop, we get 24 —v —2v —-2i = 0. Since v = 2i, we get 24 -2i —
2(2i)—2i=0o0ri=3A.

i 2 + _a a
+ v -

2v

(}24\/ 3§ (éA 5 v s

Fig. 2.33 Fig. 2.34
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Example 2.29. (b) Determine the value of current i, and voltage drop v across 15 Qresistor in
Fig. 2.34.

Solution. Itwill be seen that the dependent current source is related to i,. Applying KCL to node
a, we get4 —i+3i,-i,=00r4 i, +31i,=0. >

Applying ohm’s law, we get i, = v/5 and i, = v/15. ————¢ '\/\1{\/\_

Substituting these values in the above equation, we get
4 —(v/5)+2 (v/15)=0o0rv=60Vandi,=4A.

Example 2.29 (c). Inthe circuit of Fig. 2.35, find the values §2 ?
of i and v. All resistances are in ohms.

N
)
IN_/+

Solution. It may be noted that 12 + v =v, or v =v, -12.
Applying KCL to node a, we get ov

O-v, vy v,-12 =
oty =0 o v,=4V Fig. 2.35
Hence, v=4-12 = -8V. The negative sign shows that its polarity is opposite to that shown in
Fig. 2.35. The current flowing from the point a to ground is 4/2 =2 A. Hence, i =-2 A.

Tutorial Problems No. 2.1

1. Apply KCL to find the value of I in Fig. 2.36. [8 A]
- - +15 V-
R . ] A
2 N L
pd | N
/ L C N
/ 1
? ‘ + + +
. o LJov [
B
Fig. 2.36 Fig. 2.37
2. Applying Kirchhoff’s voltage law, find V, and V, in Fig. 2.37. [V,=10V; V,=5V]
3. Find the values of currents I, and 1, in the network of Fig. 2.38. [I,=4A;1,=5A]
|
9VI |18 v
Iy
I = 6A h
T -0
5 — 12V 12 — 1V
+0
2A 9A
M 3V |1
- 1 ! *——
| | I I
| |
Fig. 2.38 Fig. 2.39

4. Use Kirchhoff’s law, to find the values of voltages V, and V, in the network shown in Fig. 2.39.
[V,=2V;V,=5V]
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5. Find the unknown currents in the circuits shown in Fig. 2.40 (a).

4AY

SA

[L=2A;1,=7A]

y Y8A
(COPA
I _/
MM, —o 0_>_I VEYY V12A
2
10A 4 o A
3A ' L | 6A I
Y7A 1AY
2\ (=)
A NN
(a) (b)
Fig. 2.40

6. Using Kirchhoff’s current law, find the values of the unknown currents in Fig. 2.40 (b).
[L=2A1,=2A;1,=4A;1,=10A]

7.

In Fig. 2.41, the potential of point A is —30 V. Using Kirchhoff’s voltage law, find (a) value of V and
(b) power dissipated by 5 Qresistance. All resistances are in ohms.

12

Fig. 2.41

+20 V-

MWW

10

30 V.

60V

15
AW

Fig. 2.42

[100 V; 500 W]

A

12
12

2

B

Fig. 2.43

10.

11.

12.

13.

14.

Using KVL and KCL, find the values of V and | in Fig. 2.42. All resistances are in ohms.
[80 V; —4 A]
Using KCL, find the values Vg, 1;, I, and 5 in the circuit of Fig. 2.43. All resistances are in ohms.
Vag =12V 1, =283A;1,=1A; 1;=4/3A]
A bridge network ABCD is arranged as follows :
Resistances between terminals A-B, B-C, C-D, D-A, and B-D are 10, 20, 15, 5 and 40 ohms respec-
tively. A 20 V battery of negligible internal resistance is connected between terminals A and C.
Determine the current in each resistor.
[AB =0.645 A; BC =0.678 A; AD = 1.025 A; DB = 0.033 A; DC =0.992 A]
Two batteries A and B are connected in parallel and a load of 10 Qis connected across their terminals.
A has an e.m.f. of 12 V and an internal resistance of 2 Q ; B has an e.m.f. of 8 V and an internal
resistance of 1 Q Use Kirchhoff’s laws to determine the values and directions of the currents flowing
in each of the batteries and in the external resistance. Also determine the p.d. across the external
resistance. [1,=1.625 A (discharge), I;=0.75 A (charge) ; 0.875 A; 8.75 V]
The four arms of a Wheatstone bridge have the following resistances ; AB = 100, BC =10, CD =4, DA
=50 ohms.
A galvanometer of 20 ohms resistance is connected across BD. Calculate the current through the
galvanometer when a potential difference of 10 volts is maintained across AC.
[0.00513 A] [Elect. Tech. Lond. Univ.]
Find the voltage V4, in the network shown in Fig. 2.44 (a) if R is 10 Qand (b) 20 Q
[@5V(b)5V]
In the network of Fig. 2.44 (b), calculate the voltage between points a and b i.e. V.
[30 V] (Elect. Engg. I, Bombay Univ.)
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4A) YA
(CPA
I _
-\ ——e—»— I35 VI2A
5A L S
10A
N AW, —= AW
A3 A 6A 1
V7A 1AY
(=) (<
= Jea NS TN
(a) ()
Fig. 2.44

[Hint : Inthe above two cases, the two closed loops are independent and no current passes between them].

15.

16.

17.

18.

19.

20.

A battery having an E.M.F. of 110 V and an internal resistance of 0.2 Qis connected in parallel with
another battery having an E.M.F. of 100 V and internal resistance 0.25 Q. The two batteries in
parallel are placed in series with a regulating resistance of 5 Qand connected across 200 V mains.
Calculate the magnitude and direction of the current in each battery and the total current taken from
the supply mains.
[1, = 11.96 (discharge); I5 = 30.43 A (charge) : 18.47 A]
(Elect Technology, Sumbhal Univ.)
Three batteries P, Q and R consisting of 50, 55 and 60 cells in series respectively supply in parallel a
common load of 100 A. Each cell has a e.m.f of 2V and an internal resistance of 0.005 & Determine
the current supplied by each battery and the load voltage.

[1.2 A; 35.4 A: 65.8 A: 100.3 V] (Basic Electricity, Bombay Univ.)
Two storage batteries are connected in parallel to supply a load having a resistance of 0.1 & The
open-circut e.m.f. of one battery (A) is 12.1 V and that of the other battery (B) is 11.8 V. The internal
resistances are 0.03 Qand 0.04 Q respectively. Calculate (i) the current supplied at the lead (ii) the
current in each battery (iii) the terminal voltage of each battery.
[(i) 102.2 A (ii) 62.7 A (A). 39.5 A (B) (|||) 10.22 V] (London Univ.)
Two storage batteries, A and B, are connected in parallel to supply , 3
a load the resistance of which is 1.2 Q Calculate (i) the currentin | ~*
this lood and (ii) the current supplied by each battery if the open- v
circuit e.m.f. of A is 12.5 V and that of B is 12.8 V, the internal )% 3t/ & W
resistance of A being 0.05 Qan that of B 0.08 Q . Y ,
[(i) 10.25 A (ii) 4 (A), 6.25 A (B)] (London Univ.) b
The circuit of Fig. 2.45 contains a voltage-dependent voltage source. p
Find the current supplied by the battery and power supplied by the Fig. 2.45
voltage source. Both resistances are in ohms. [8 A ; 1920 W]
Find the equivalent resistance between terminals a and b of the network shown in Fig. 2.46. [2 Q]

g 12V

Fig. 2.46 Fig. 2.47 Fig. 2.48
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21.
22.
23.

24,
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Find the value of the voltage v in the network of Fig. 2.47. [36 V]
Determine the current i for the network shown in Fig. 2.48. [-40 A]
State and explain Kirchhoff’s current law. Determine the value of Rg and R, in the network of Fig.

2.49if V, = V,/2 and the equivalent resistance of the network between the terminals A and B is 100
[Rg=100/3 Q R, =400/3 Q] (Elect. Engg. I, Bombay Univ.)

Four resistance each of R ohms and two resistances each of S ohms are connected (as shown in Fig.
2.50) to four terminasl AB and CD. A p.d. of V volts is applied across the terminals AB and a resis-
tance of Z ohm is connected across the terminals CD. Find the value of Z in terms of S and R in order
that the current at AB may be V/Z.

Find also the relationship that must hold between R and S in order that the p.d. at the points EF be

vi2. [Z=JR(R+2S);S=4R]

A R g R C 4 R R g R R
Q A AN —o—MW\ AMM—0—AWN ANN—0—
W a
o L
y % (IR £ s &
J N
g Lo o o]
B F D B F D
Fig. 2.49 Fig. 2.50
2.10. Maxwell’s Loop Curent Method

This method which is particularly well-suited to coupled circuit solutions employs a system of
loop or mesh currents instead of branch currents (as in Kirchhoff’s laws). Here, the currents in
different meshes are assigned continuous paths so that they do not split at a junction into branch
currents. This method eliminates a great deal of tedious work involved in the branch-current method
and is best suited when energy sources are voltage sources rather than current sources. Basically, this
method consists of writing loop voltage equations by Kirchhoff’s voltage law in terms of unknown
loop currents. As will be seen later, the number of independent equations to be solved reduces from
b by Kirchhoff’s laws to b —j —1) for the loop current method where b is the number of branches and
j is the number of junctions in a given network.

A

R, R, R Fig. 2.51 shows two batteries E, and E,

A B Y E ,\/\/3\/\ G connected in a network consisting of five

resistors. Let the loop currents for the
three meshes be I, I, and . Itis obvious

E that current through R, (when considered
EL___ I ?R I §R5 I ____2 as a part of the first loop) is (I, -1,) and
4 that through R is (I, —15). However,

when R, is considered part of the second
loop, current through it is (1, —1,).
Similarly, when R; is considered part of

C F H  the third loop, current through it is
Fig. 2.51 (I; =1,). Applying Kirchhoff’s voltage

law to the three loops, we get,
E,-L,R, R, (I, -1,) =0 or I;(R,+R)-I,R,-E, =0 ...loop 1
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Similarly, — —1,R, =R (I, —=13) =R, (I, -1;) =0
or LR, -, (R,+R,+R) + 1R, = 0 ...loop 2
Also —I3R; —E, =Rg (I;=1,) = 0 or L,R;—l;(R;+R;)-E, =0 ...loop 3

The above three equations can be solved not only to find loop currents but branch currents as
well.

2.11. Mesh Analysis Using Matrix Form

Consider the network of Fig. 2.52, which contains
resistances and independent voltage sources and has three
meshes. Let the three mesh currents be designated as 1, I,
and I, and all the three may be assumed to flow in the
clockwise direction for obtaining symmetry in mesh 1
equations.

Applying KVL to mesh (i), we have

E, -1;R; -R; (I; =13) =R, (I; -1,) =0

or (Ry+R,+Ry I —R,l,-Rsl;=E, (i) - - T

Similarly, from mesh (ii), we have

E, -R, (I, -1,) -Rs (I, =13) =I,R, =0
or —R)l; +(R,+R,+Ry) I, Rl =E, (i)
Applying KVL to mesh (iii), we have

E; —13R; =R (I; -1,) —R; (I; =1)) =13 R, =0

or —Rgl; —Rl, + (R;+ Ry + R+ Ry) I3 = E,4 (i)

It should be noted that signs of different items in the above three equations have been so changed
as to make the items containing self resistances positive (please see further).

The matrix equivalent of the above three equations is

+ (R, + R, + Ry) -R, - R, I E,
-R, + (R, + R, + Ry) - R I,|=|E,
-R, -Re +(Ry+ Rs + Rg + R)) || I3 E,

It would be seen that the first item is the first row i.e. (R, + R, + Ry) represents the self resistance
of mesh (i) which equals the sum of all resistance in mesh (i). Similarly, the second item in the first
row represents the mutual resistance between meshes (i) and (ii) i.e. the sum of the resistances com-
mon to mesh (i) and (ii). Similarly, the third item in the first row represents the mutual-resistance of
the mesh (i) and mesh (ii).

The item E,, in general, represents the algebraic sum of the voltages of all the voltage sources
acting around mesh (i). Similar is the case with E, and E,. The sign of the e.m.f’s is the same as
discussed in Art. 2.3 i.e. while going along the current, if we pass from negative to the positive
terminal of a battery, then its e.m.f. is taken positive. If itis the other way around, then battery e.m.f.
is taken negative.

In general, let
R,; = self-resistance of mesh (i)
R,, = self-resistance of mesh (ii) i.e. sum of all resistances in mesh (ii)
R,5 = Self-resistance of mesh (iii) i.e. sum of all resistances in mesh (iii)
Ry, = Ry, = —[Sum of all the resistances common to meshes (i) and (ii)] *
R,3 = Ry, = —[Sum of all the resistances common to meshes (ii) and (iii)]*

*  Although, it is easier to take all loop currents in one direction (Usually clockwise), the choice of direcion for any
loop current is arbitrary and may be chosen independently of the direction of the other loop currents.

= :
|

==

L 1

Voltase Source

F_________
—
|

=

Fig. 2.52
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R,; = Ry3 = —[Sum of all the resistances common to meshes (i) and (iii)] *
Using these symbols, the generalized form of the above matrix equivalent can be written as

Ry R Rygflh E
Ry Ry Ryl =1E
R31 R32 R33 |3 E3
If there are m independent meshes in any liner network, then the mesh equations can be written in

the matrix form as under :
Riu Ry Ry o Ryl E,
Ryy Ry Ry o

R31 R32 R33 RSm m m

The above equations can be written in a more compact formas [R.] [I,,] = [E]. Itis known as
Ohm’s law in matrix form.

In the end, it may be pointed out that the directions of mesh currents can be selected arbitrarily.
If we assume each mesh current to flow in the clockwise direction, then

(i) All self-resistances will always be postive and (ii) all mutual resistances will always be
negative. We will adapt this sign convention in the solved examples to follow.

The above main advantage of the generalized form of all mesh equations is that they can be
easily remembered because of their symmetry. Moreover, for any given network, these can be written
by inspection and then solved by the use of determinants. It eliminates the tedium of deriving simul-
taneous equations.

Example. 2.30. Write the impedance matrix of the network shown in Fig. 2.53 and find the
value of current I. (Network Analysis A.M.1.E. Sec. B.W. 1980)

Solution. Different items of the mesh-resistance matrix [R ] are as under :
Ry=1+3+2=6Q;R,=2+1+4=7Q;R;;=3+2+1=6Q;
Ri,=Ry =-2Q;Ry=R;, =-1Q;R;3=R;, =-3Q;
E,=+5V,E,=0,E;=0.
The mesh equations in the matrix form are

Ry R, Rygllh E, 6 -2 3]/ L] [5
Ry Ry, Rylll| = |E|or|-2 7 -1||1,|=|0

Rau Ry Rylls Es -3 -1 6]l 0
6 -2 -3
A = -2 7 -1|=6(42-1)+2(-12-3)—3(2+21) =147
-3 -1 6
6 -2 5
Ay = |-2 7 0[=6+2(5)-3(-35=121
_—3 -1 0
_ _121 _
ly = AJA=122-0823A

In general, if the two currents through the common resistance flow in the same direction, then the mutual
resistance is taken as negative. One the other hand, if the two currents flow in the same direction, mutual
resistance is taken as positive.
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Example 2.31. Determine the current supplied by each battery in the circuit shown in Fig. 2.54.
(Electrical Engg. Aligarh Univ.)

Solution. Since there are three meshes, let the three loop currents be shown in Fig. 2.51.

AW AMW—I| AW
B,
Taovy b svo B J):2
B B

Fig. 2.54

For loop 1 we get

20 51, -3 (I, -1,) -5=0 or 8l -3l,=15 (i)
For loop 2 we have

AL, +5-2(,-1;))+5+5-3(1,-1))=0 or 3, -9, +2l;=-15 (1)
Similarly, for loop 3, we get

-8l; -30 -5 -2(l; -1,) =0 or 21,-10l, =35 (i)
Eliminating I, from (i) and (ii), we get 631, —161; = 165 (iv)
Similarly, for I, from (iii) and (iv), we have I, =542/299 A
From (iv), I, =-1875/598 A
Substituting the value of I, in (i), we get I, =765/299 A

Since |4 turns out to be negative, actual directions of flow of loop currents are as shown in
Fig. 2.55.

o A
S
==
—
_|_ 18 Vv
o B
Fig. 2.55
Discharge current of B, = 765/299A
Charging current of B, = I, -I,=220/299 A
Discharge current of B, = I, +1;=2965/598 A
Discharge current of B, = 1,=545/299 A; Discharge current of B, = 1875/598 A

Solution by Using Mesh Resistance Matrix.

The different items of the mesh-resistance matrix [R ] are as under :
R;=5+3=8QR,=4+2+3=9QR;;=8+2=10Q

Ri =Ry = =3 Q Ry =Ry =0 Ryy =Ry = -2 Q

E, = algebraic sum of the voltages around mesh (i) =20 -5=15V
E,=5+5+5=15V;E;=-30-5=-35V
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Hence, the mesh equations in the matrix form are

Rll R12 R13 1 El 8 -3 0 Il 15
Ry Ry Ryulll| = [Elor|-3 9 —2||I|=| 15
|

N

Ry Ry Ry llls E, 0 -2 10]|1,| [-35

8 -3 0

A=|-3 9 —2|=8(90-4)+3(-30)=598
0 -2 10
15 -3 0

A, = | 15 9 -2|=15(90 - 4) - 15(- 30) - 35 (6) =1530
~-35 -2 10
8 15 0

A, = |-3 15 —2|=8(50 - 70) + 3(150+ 0) =1090
0 -35 10
8 -3 15

Ay = |-3 9  15|=8(-315+30) + 3(105+ 30) = — 1875
0 -2 -35

A, -1875

| = A _1530_765 ).\ _ A, 1000 _545 ., _A;_ -1875
! A 598 299" 2 A 598 209 ¥ A 598
Example 2.32. Determine the current in the 4-Qbranch in the circuit shown in Fig. 2.56.

(Elect. Technology, Nagpur Univ.)
Solution. The three loop currents are as shown in Fig. 2.53 (b).

For loop 1, we have

-1(,-1) -3, -I;) -4, +24=0 or 8l -I,-3l;=24 (1)
For loop 2, we have

12 21, -12 (I, =1;)) -1 (1, =1)) =0 or I =15l, + 12I; = =12 ..(1h)
Similarly, for loop 3, we get

-12 (I; -1,) =21, =10 -3 (I; =I;) = 0 or 3I; + 121, -171, = 10 (i)
Eliminating I, from Eq. (i) and (ii) above, we get, 1191, -571, = 372 (iv)
Similarly, eliminating I, from Eq. (ii) and (iii), we get, 571, -1111, =6 (V)

From (iv) and (v) we have,
I, = 40,950/9,960 = 4.1 A
Solution by Determinants
The three equations as found above are
8l, -1, =3l; = 24

[, -151, + 12I, = -12
31, + 121, -171; = 10
8 -1 -3]|x 24
Their matrix formis |1 -15 12||y|=|-12
3 12 -17||z 10
8 -1 -3 24 -1 -3
A=|1 -15 12|=664, A/ =|-12 -15 12|=2730
3 12 -17 10 12 -17

I, = AJA = 2730/664 = 4.1 A
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—  AAAA oa

>z =10

Fig. 2.56

o b

Solution by Using Mesh Resistance Matrix

For the network of Fig. 2.53 (b), values of self resistances, mutual resistances and e.m.f’s can be
written by more inspection of Fig. 2.53.

R;=3+1+4=8Q;R,,=2+12+1=15Q;R;;=2+3+12=17Q
Rip =Ry = -1 Ry =Ry = -12; Rj3 =Ry = -3
E, =24V ;E, =12V ;E;=-10V
The matrix form of the above three equations can be written by inspection of the given network

as under :-

Ru Ry Rygflh E 8 -1 -3k 24
Ryy Ry Rygifly|=|Ey|or|-1 15 —12(|1,|=| 12
R31 R32 R33 |3 E3 -3 -12 17 |3 -10

A = 8 (255 -144) + 1(-17 -36) —3 (12 + 45) = 664

24 -1 -3

A= 12 15 —-12|=24(255-144) —12(—17 — 36) —10(12 + 45) = 2730

-10 -12 17
_ 1 2730
I, = 564 41A

It is the same answer as found above.

Tutorial Problems No. 2.2

1. Find the ammeter current in Fig. 2.57 by using loop analysis.
[1/7 A] (Network Theory Indore Univ. 1981)

10

oy . A
[ AL i 10 @
2 2K AW ~AMA——AMW
10K 10 10
4 10§ §10K +
4V 2K 100 V 10§ L | ==
A 10 I > 50V
10 1K -
AN —AMA b

Fig. 2.57 Fig. 2.58 Fig. 2.59
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2. Using mesh analysis, determine the voltage across the 10 kQ resistor at terminals a-b of the circuit
shown in Fig. 2.58. [2.65 V] (Elect. Technology, Indore Univ.)

3. Apply loop current method to find loop currents I, I, and |, in the circuit of Fig. 2.59.
[1,=375A,1,=0,1,=125A]

2.12. Nodal Analysis With Sources

The node-equation method is based directly on Kirchhoff’s current law unlike loop-current method
which is based on Kirchhoff’s voltage law. However, like loop current method, nodal method also
has the advantage that a minimum
number of equations need be written to
determine the unknown quantities.
Moreover, it is particularly suited for
networks having many parallel circuits
= with common ground connected such as
electronic circuits.

For the application of this method,
every junction in the network where three
or more branches meet is regarded a
node. One of these is regarded as the
reference node or datum node or zero-potential node. Hence the number of simultaneous equations
to be solved becomes (n —1) where n is the number of independent nodes. These node equations
often become simplified if all voltage sources are converted into current sources (Art. 2.12).

(i) First Case

Consider the circuit of Fig. 2.60 which has three nodes. One of these i.e. node 3 has been taken
in as the reference node. V, represents the potential of node 1 with reference to the datum node 3.
Similarly, Vg is the potential difference between node 2 and node 3. Let the current directions which
have been chosen arbitrary be as shown.

For node 1, the following current equation can be written with the help of KCL.

Node Node
R, ! R, 5 Ry

Referen;e Node

Fig. 2.60

L = 1,+1,
Now LR, = E; =V, =~ I =(E -V)R, (i)
Obviously, I, = VAR, Also, LR, =V, Vg (" Vy>Vp)
I, = (V4 —Vp)R,
Substituting these values in Eq. (i) above, we get,
E -Va - Va N V,—V;
R Ry Ry

Simplifying the above, we have

1.1 1) Vs E
Vol =4+ |- - =" i
A Rl R2 R4 j R2 R1 =0 ...(||)
The current equation for node 2 is I = I, + I,
Vg Vo-Vg  E, -V

or R_s = R, + R, ..(iii)
1 1 1 V, E .
Vo| —+—+— |-+ -—==0
or B [Rz + R, + st R, R, (iv)

Though the above nodal equations (ii) and (iii) seem to be complicated, they employ a very
simple and systematic arrangement of terms which can be written simply by inspection. Eq. (ii) at
node 1 is represented by
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1. The product of node potential V, and (1/R, + 1/R, + 1/R,) i.e. the sum of the reciprocals of
the branch resistance connected to this node.

2. Minus the ratio of adjacent potential Vi and the interconnecting resistance R,.
3. Minus ratio of adjacent battery (or generator) voltage E, and interconnecting resistance R;.
4. All the above set to zero.

Same is the case with Eq. (iii) which applies to node 2.

Ry
MWW
—I
R, Nolde R, Node R, Node R,
— AW
— Vy
I+
- I 5
£

Reference Node

Fig. 2.61

Using conductances instead of resistances, the above two equations may be written as
Vo (G +G,+G) VG, -EG =0 (V)
Vg (G, + G + Gg) -V,.G, -E,G; =0 (V)

To emphasize the procedure given above, consider the circuit of Fig. 2.61.

1,1 1 1) Ve V5 E
The three node equationsare Va| 5t 5 5 * 5 |" 2 & B =0 node 1
a A ( Rl RZ RS RS ] RZ RS Rl ( )
1,1, 1) Ve Vs
Vel tat5 =5 5 =0 node 2
¢ (Rz Ry Re j R, R ( )
1,1 .1 1) Y% Va E
Velote Tt It e TR =0 node 3
B [ R, R, R, Ry ] R, R, R, (node 3)
After finding different node voltages, various currents can be calculated by using Ohm’s law.
(if) Second Case R Node £ Node R
. . 1 1 3 2 3
Now, consider the case when a third A ‘ ul_/\w ‘ AN
battery of e.m.f. E; is connected between —=1 v
nodes 1 and 2 as shown in Fig. 2.62.
It must be noted that as we travel from -
1

node 1 to node 2, we go from the -ve ter-
minal of E; to its +ve terminal. Hence,
according to the sign convention given in
Art. 2.3, E; must be taken as positive.
However, if we travel from node 2 to node
1, we go from the +ve to the -ve terminal

Reference Node

Fig. 2.62
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of E;. Hence, when viewed from node 2, E; is taken negative.

For node 1
l,-l,-1,=00rl; =1, +1; —as per KCL
Now, | :El_VA,| :VA+E3_VB;| _Va
1 Rl 2 RZ 4 R4
E1—VA_VA+VA+E3—VB
R R R,
1 1 1 E, Vg E .
or Vol =+=—+—|-—-=—"+-===0 (i)
A(Fﬁ R, st R R R

It is exactly the same expression as given under the First Case discussed above except for the
additional term involving E;. This additional term is taken as +E4/R, (and not as —E4/R,) because
this third battery is so connected that when viewed from mode 1, it represents a rise in voltage. Had
it been connected the other way around, the additional term would have been taken as -E4/R,.

For node 2

l,+I1;-1;=0 or I,+I1;=1; -asper KCL

V,+E,-V E, -V V,
Now, as before, |, = A8 B | =—2 B | =B
2 RZ 3 R3 5 R5
Va+E;-Vg  E, -V, _\i
R, Ry - Rs
. e . 1 1 1 Ez VA E3 ..
On simplifying, we get Vg| —+——+—|-—=-F— -+ =0 (i
p fy g g B[RZ R3 RSJ R3 RZ R2 ( )

As seen, the additional terms is -E4/R, (and not + E,/R,) because as viewed from this node, E,
represents a fall in potential.

It is worth repeating that the additional term in the above Eq. (i) and (ii) can be either +E4/R, or
-E4/R, depending on whether it represents a rise or fall of potential when viewed from the node
under consideration.

Example 2.33. Using Node voltage method, find the current in the 3Q resistance for the net-

work shown in Fig. 2.63. (Elect. Tech. Osmania Univ.)
Solution. As shown in the figure node 2 has

been taken as the reference node. We will now 3 2V @ 2

find the value of node voltage V,. Using the tech- AN |

nique developed in Art. 2.10, we get

1.1 1) 4 (4+2)_
V1(5+2+2) 2 ( 5 )‘0 ;2
The reason for adding the two battery volt-
agesof 2V and 4 V is because they are connected
in additive series. Simplifying above, we getV, = ~—, v

8/3 V. The current flowing through the 3 Q

resistance towards node 1 is = 6(;£8§) = % A @
Alternatively =
6-V, 4 V Fig. 2.63
5 2 2

1
o

12 -2V, + 20 -5V,
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v, = 32

6-V, 4-V, \

Also 5 + 5 =5
12 -2V, + 20 -5V, = 5V

1
12v, = 32; V,=8/3
Example 2.34. Frame and solve the node equations of the network of Fig. 2.64. Hence, find the

total power consumed by the passive elements of the network. (Elect. Circuits Nagpur Univ.)
Solution. The node equation for node 1 is @ L-— @
v1(1+1+1—)—v—2—§ 0 VWV
05) 05 1
or 4V1 —2V2 =15 (I) 10 1Q

270505 1 15V
or AV, 7V, = —40 (i) T

V, =11 voltand V, = 37/4 volt
Now,
I, = 15—|37/4 =%3A=5.75A; I2=11—37/4

l,=575+35=925A;1,=

Datum Node
Fig. 2.64
=35A

20-11

=9A;1;=9-35=55A

The passive elements of the
network are its five resistances.
Total power consumed by them is
=575 x1+35°x05+9°x1+
9.25° x 1 +5.5%x 2= 266.25

Example 2.35. Find the branch
currents in the circuit of Fig. 2.65
by using (i) nodal analysis and
(ii) loop analysis.

Solution. (i) Nodal Method

The equation for node A can be
written by inspection as explained in Art. 2-12.

ROR R R R R
Substituting the given data, we get,
1,1,1).6 V8.5 ¢ or2v,-v,=-3 i
VA(6+2+3) 6 2 20 ATTB ()
For node B, the equation becomes
1 1 1 E, V. E
V|l —++——|-=—=-FL-==2 =0
B[R2+R3+R5J Ry Ry Ry
1,121,110 Va 5 : Va .
V = = —_—-—— -t = :o .o V __:5 U
B(2+4+4) 4 2 2 572 )

From Eq. (i) and (ii), we get,
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- 5V
3 3 4 6 B 2 ¢ 4 D
_E V., 6 43 7
h = R, 6 g "
CVa B3V (43 5 (713) 1
, = 7R, 2 3hevr b )3 L34 L oy
_E, Vg 10 1753 13,
s = TR, 4 12
E

\Y V 17 -
|4_R—’:4—f%A,I5R—z 11/3 A F
(if) Loop Current Method

Let the direction of flow of the three loop currents be as shown in Fig. 2.66.
Loop ABFA :

Fig. 2.66

-6, =3(I; -1,)+6 =0
or 3, —1, =2 ()
Loop BCEFB :
+5 =21, -4(1, 1)) -3 (I, 1)) =0
or 3, -9, +4l; = -5 (1)
Loop CDEC :
—41;,-10 -4 (I;-1,) =0 or 2I,-4l;=5 (i)

The matrix form of the above three simultaneous equations is

3 -1 0] [x 2 3 -1 0
3 -9 4|=|y|=|-5[;A=|3 -9 4}=84-12-0=72
0 2 -4| |z 5 0 2 -4
2 1 0 3 2 0 3 -1 2
A=|-5 -9 4|=56,A,=|3 -5 4|=24A,=|3 -9 -5[=—78
5 2 -4 0 5 -4 0 2 5
|, =AJA=56T2=TI9A; 1, = AJA=2472=1/3A
l, = AJA=-78/72 = -13/12 A

The negative sign of I, shows that it is flow-
ing in a direction opposite to that shown in Fig. 4 6
2.64 i.e. it flows in the CCW direction. The
actual directions are as shown in Fig. 2.67.

The various branch currents are as under :

g 1 TI9A; Ige 1y 1, ; % gA

1.,. 1 13 17

IBC |2 §A’|CE 2 '3 § E E
13 5 Fig. 2.67

Solution by Using Mesh Resistance Matrix

From inspection of Fig. 2.67, we have
Ry = 9 Ry,=9Rp;;=8
Ry = Ry =383Q Ry =Ry =-4QR;3=R; =0Q
E, =6V:E,=5V,E;=-10V



DC Network Theorems 89

Ru Ryp Ryl h 'E, 9 -3 0|l L 6
R,y Ry Ryill,| = |Eyfor|=-3 9 4|1, |= 5
R31 R32 R33 I3 _Es 0 -4 8 I3 -10
9 -3 0
A =1|-3 9 —4|=9(72-16) +3 (- 24) =432
0 -4 8
6 -3 0
A = 5 9 —-4|=6(72-16) —5(—24) -10(12) = 336
-10 -4 8
9 6 0
A, = -3 5 —4(=9(40-40)+3(48) =144
0 -10 8
9 -3 6
Ay = -3 9 5|=9(-90+90) — 3(30 + 24) =— 468
0 -4 -10

AJA =336/432=7/9 A

AJA = 1441432 = 1/3 A

A A = —468/432 = -13/12 A
These are the same values as found above.

2.13. Nodal Analysis with Current Sources

Consider the network of Fig. 2.68 (a) which has two current sources and three nodes out of which
1 and 2 are independent ones whereas No. 3 is the reference node.

The given circuit has been redrawn for ease of understanding and is shown in Fig. 2.68 (b). The
current directions have been taken on the assumption that

1. bothV, and V, are positive with respect to the reference node. That is why their respective
curents flow from nodes 1 and 2 to node 3.

2.V, is positive with respect to V, because current has been shown flowing from node 1 to
node 2.

A positive result will confirm out assumption whereas a negative one will indicate that actual
direction is opposite to that assumed.

T T 1

AR

ONEHENE O

A I, L

Ry

wWe

(a)
Fig. 2.68

We will now apply KCL to each node and use Ohm’s law to express branch currents in terms of
node voltages and resistances.
Node 1
L=, =13 =0 or I,=1,+1I
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Now l, = Y_Ri and IS:V1F;V2
3
VvV, V,-V 1 1 V. .
b= 2+1 "2 or v |=+=|-2=]| (1)
Rl R3 ! Rl R3 R3 !
Node 2
l—l,—l, = 0 or Iy=1,+I,
V. _
Now, I, = =2 and |.="1=V2 _as before
) R, 37 R,
V-V, \Y \Y -
= I,+=% or v 1.1 — 21— (1
Rs >R, 2[R2+ Ry ) Rg ' W

The above two equations can also be written by simple inspection. For example, Eq. (i) is
represented by

1. productof potential V, and (1/R, + 1 /R;) i.e. sum of the reciprocals of the branch resistances
connected to this node.

2. minus the ratio of adjoining potential V, and the interconnecting resistance Rj.
3. all the above equated to the current supplied by the current source connected to this node.
This current is taken positive if flowing into the node and negative if flowing out of it (as per sign
convention of Art. 2.3). Same remarks apply to Eq. (ii) where |, has been taken negative because it
flows away from node 2.
In terms of branch conductances, the above two equations can be put as
V, (G, +Gy) -V,G; = I, and V, (G, + G,) -V,G; = -1,

Example 2.36. Use nodal analysis method to find currents in the various resistors of the circuit
shown in Fig. 2.69 (a).

Solution. The given circuit is redrawn in Fig. 2.66 (b) with its different nodes marked 1, 2, 3 and
4, the last one being taken as the reference or datum node. The different node-voltage equations are as
under :

me — AW
13
L 21 1 O «/%»@«/lwl“@
—
I, I i, TR Vs A

2 5 4 28A 5 . B
28A 2A 2A

©)

Datum Node
@ ®)
Fig. 2.69
1.1 1)V, V,

Node1 vi[i4lil ) Ya_Ys _
ode 1(2+2+10 > 10 8
or 11V, —5V, —V, —280 = 0 ()

1,1 vV, V,
Node 2 V, [=+=2+1)-2-2 =0
oce 2(2+5+) 2 1
or 5V, ~17V,+ 10V, = 0 (i)

v, V.
Node 3 v3(1+1+1_)__2__1 -
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or V,+10V,-135V,-20 = 0 (i)
The matrix form of the above three equations is

11 -5  -1][x]| [280
5 -17 10(|y|=| ©
|1 10 -135]|z 20
11 -5 -1
A=|5 -17 10 | =1424.5-387.5- 67 =970
1 10 -135
280 -5 -1 11 280 -1
A = | 0 -17 10|=34,920, A,=| 5 0 10 | =19,400
20 10 -135 1 20 -135
11 -5 280
A, = |5 -17 0]=15520
3
1 10 20
_ Ay 34,920 _ _A, 19,400 _ _A; 15520 _
1T AT g0 OVVem = Tgg cOVVe= =g S0V

It is obvious that all nodes are at a higher potential with respect to the datum node. The various
currents shown in Fig. 2.69 (b) can now be found easily.
V,/2=36/2=18 A
(V; =V,)/2 = (36 —20)/2=8 A
(V; =V,)/10 = (36 -16)/10 =2 A
It is seen that total current, as expected, is 18 +8 + 2 =28 A
I, = (V,-V,)/1=(20-16)/1 =4 A
l; = V,/5=20/5=4A 1=V, /4=16/4=4 A
Example 2.37. Using nodal analysis, find the different branch currents in the circuit of Fig.
2.70 (a). All branch conductances are in siemens (i.e. mho).

Solution. Let the various branch currents be as shown in Fig. 2.70 (b). Using the procedure
detailed in Art. 2.11, we have

28
MW

1S 5A

Q A4S 4s§

L
(a)
Fig. 2.70
First Node
V,(1+2)-V,x1-V;x 2=-2 or 3V,-V,-2V,=-2 ()
Second Node
V,(1+4)-V,x1 =5 or V,-5V,=-5 (i)

Third Node

V;(2+3)-V,x2 = -5 or 2V, -5V,=5 ..(iii)
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Solving for the different voltages, we have
- _3 e __8
vV, = 2V,V2 10VandV3 5V
;. = (V,-V)x1=(-15-07)x1= -22A
(V3-V) x2=[-16-(-15)]%x2=-02 A
4 V,x4=4x(7/10)=28 A
3 2+28=48A

As seen, |, and |, flow in directions opposite to those
originally assumed (Fig. 2.71).

N
1 |

Example 2.38. Find the current I in Fig. 2.72 (a) by Fig. 2.71
changing the two voltage sources into their equivalent
current sources and then using Nodal method. All resistances are in ohms.

Solution. The two voltage sources have been converted into their equivalent current sources in
Fig. 2.72 (b). The circuit has been redrawn as shown in Fig. 2.72 (c) where node No. 4 has been

SA YA
@ Z/

A, A
1 @ 1 g 1 1
@-—M@ D @ L
E 12 ERES I !
AV AV 4A
_ ® ©)
(@) (b) (c)
Fig. 2.72

taken as the reference node or common ground for all other nodes. We will apply KCL to the three
nodes and taken currents coming towards the nodes as positive and those going away from them as
negative. For example, current going away from node No. 1 is (V, -V,)/1 and hence would be taken
as negative. Since 4 A current is coming towards node No. 1, it would be taken as positive but 5 A
current would be taken as negative.

(Vl _O) _ (\/1 _Vz) _ (Vl _Vg)

Nodel: - 1 1 1 -5+4=0
or 3V, -V,-V,=-1 ()
© Nodez: -Y20 M=V V) 5 5
1 1 1
or V, =3V, +V;=-2 (i)
Node3: -Ya=0 =W Os=Vo) 4,5
1 1 1
or Vi+V,-3V,=1 ..(iii)

The matrix form of the above three equations is

3 -1 -1] [v] [-1
1 -3 1[=|V,|=|-2
11 -3] |V 1
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3 -1 -1

A=|1-3 1/=39-)-1(3+1)+1-1-3)=16
1 1 -3
3 -1 -1

Ay = |1 -2 1/=36-1)-1(3+1)+1-1-2)=8
1 1 -3

V, = AJA=8/16=05V

| = V,/1=05A

Example 2.39. Use Nodal analysis to determine the value of current i in the network of Fig.
2.73.

Solution. We will apply KCL to the two nodes 1 and 2. Equating the incoming currents at node

1 to the outgoing currents, we have A
Vv, -V, V; . 4
6 = 1 + s +3i @
As seen. i=V,/8. Hence, the above equation becomes - —"@

3i
— Vl_VZ Vl Vl
6 = 7] + 3 +3 3 6A

or 3V, -V, =24 ©) §8 6%

Similarly, applying KCL to node No. 2, we get
vV, -V, V. V, -V Vv, V.

+3i= %orTZ+3§1=€Z or 3V, =2V, Fig. 2.73
From the above two equations, we get

V, =16V .. i=16/8=2A.
Example 2.40. Using Nodal analysis, find the node voltages V, and V, in Fig. 2.74.
Solution. Applying KCL to node 1, we get N\IA

£
g1 Vi M-V) &
3 6 ® AN @

or 3V, -V, = 42 (i) 6

Similarly, applying KCL to node 2, we get

LMD VY Vo ® 2 52 2w

6 15 10 8A
or V, -2V, = -6 (i) _T_
Solving for V, and V, from Eqn. (i) and (ii), we get =
V, = 18VandV,=12V. Fig. 2.74

2.14. Source Conversion

A given voltage source with a series resistance can be converted into (or replaced by) and equivalent
current source with a parallel resistance. Conversely, a current source with a parallel resistance can
be converted into a vaoltage source with a series resistance. Suppose, we want to convert the voltage
source of Fig. 2.75 (a) into an equivalent current source. First, we will find the value of current
supplied by the source when a “short” is put across in termials A and B as shown in Fig. 2.75 (b). This
currentis I = V/R.

A current source supplying this current | and having the same resistance R connected in parallel
with it represents the equivalent source. It is shown in Fig. 2.75 (c). Similarly, a current source of |
and a parallel resistance R can be converted into a voltage source of voltage V = IR and a resistance
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R R
AN\ oyl AN oy Iy
+ + é +
QV O IO
=
oB ’ OB oB
(a) (b) (c)
Fig. 2.75

R in series with it. It should be kept in mind that a voltage source-series resistance combination is
equivalent to (or replaceable by) a current source-parallel resistance combination if, and only if their

1. respective open-circuit voltages are equal, and

2. respective short-circuit currents are equal.

For example, in Fig. 2.75 (a), voltage across terminals A and B when they are open (i.e. open-
circuit voltage V) is V itself because there is no drop across R. Short-circuit current across AB = |
=VIR.

Now, take the circuit of Fig. 2.75 (c). The open-circuit voltage across AB = drop across R = IR
=V. Ifashortis placed across AB, whole of I passes through it because R is completely shorted out.

Example 2.41. Convert the voltage source of Fig. 2.73 (a) into an equivalent current source.

Solution. Asshown in Fig 2.76 (b), current obtained by putting a short across terminals A and B
is10/5=2A.
Hence, the equivalent current source is as shown in Fig. 2.76 (c).

5Q 5Q
AW o4 AW o¥ oF

CEIOV <§10V I:2Al GEZA ;59

oB OB oB
(a) (b) (c)
Fig. 2.76

Example 2.42. Find the equivalent volt- o
age source for the current source in Fig. 2.77 od AMM, od

(a).

Solution. The open-circuit voltage across
terminals A and B in Fig. 2.77 (a) is CDSA gzg C)OV

Voe = drop across R
=5x2=10V (@ ()
Hence, voltage source has a voltage of 10 VV
and the same resistance of 2 Qthrough connected Fig. 2.77
in series [Fig. 2.77 (b)].
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Example 2.43. Use Source Conversion technique to find the load current I in the circuit of Fig.
2.78 (a).

Solution. Asshown in Fig. 2.78 (b). 6-V voltage source with a series resistance of 3 Qhas been
converted into an equivalent 2 A current source with 3 Qresistance in parallel.

R N MU R N
I
O 26 w®) a5 (Om 5 5 a() aE
B ‘ B
(@) (b)
Fig. 2.78

The two parallel resistances of 3 Qand 6 Q can be combined into a single resistance of 2 Qas
shown in Fig. 2.79. (a)

The two current sources cannot be combined together because of the 2 Q resistance present
between points Aand C. To remove this hurdle, we convert the 2 A current source into the equivalent
4V voltage source as shown in Fig. 2.79 (b). Now, this 4 V voltage source with a series resistance of
(2 + 2) = 4 Qcan again be converted into the equivalent current source as shown in Fig. 2.80 (a).
Now, the two current sources can be combined into a single 4-A source as shown in Fig. 2.80 (b).

2 1 2 2 1
4w A
Iy
+
Q 2A 2 3A RL§3 C>4V 3A R, 33
B D
(@) (b)
Fig. 2.79
1 A 1
I it

<>1A %4 3A<D R 23 Q A 24 RZ3

(a) (b)
Fig. 2.80

The 4-A current is divided into two equal parts at point A because each of the two parallel paths
has a resistance of 4 Q Hence |, =2 A.
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Example 2.44. Calculate the direction and magnitude of the current through the 5 Q resistor

between points A and B of Fig. 2.81 (a) by using nodal voltage method.

Solution. The first thing is to convert the voltage source into the current sources as shown in
Fig. 2.81 (b). Next, the two parallel resistances of 4 Qeach can be combined to give a single resis-

tance of 2 Q[Fig. 2.82 (a)]. Let the current directions be as indicated.

3 4 5Q 3
— WA

5

C?zov 4Q 50 CDIA CDSA 34 S4 $s IACD

MAN—

L L
(a) (b)
Fig. 2.81
Applying the nodal rule to nodes 1 and 2, we get
Node 1
1 1\ V, _ _ .
A (§+§)_?2 =5 or 7V,-2V,=50 (i)
Node 2
1,1\ V) .
2 (§+§)_§ =-1 or V,-2V,=5 (i)
. _15 _5
Solving for V; and V,, we get V, = > V and V, = 2 V.
I, = vV, V, 15/2 5/4 1.25 A
5 5
v 5 14 5
T W— gl
L 1.25A
4 SAII%Z 7 §5 1 1A 5A 2 l 5 )1
<> l l <> <> §3.75A 0.25A <>
T T
(@) ®)
Fig. 2.82

Similarly, I, =V,/2 =15/4 =3.75A; 1, =V,/5=5/20 = 0.25 A.
The actual current distribution becomes as shown in Fig. 2.79 (b).

Example 2.45. Replace the given network by a single current source in parallel with a resistance.

[Bombay University 2001]
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Solution. The equivalence is expected for De o A
a load connected to the right-side of terminals A
and B. In this case, the voltage-source has no 6Q
resistive element in series. While handling such 10A @

cases, the 3-ohm resistor has to be kept aside,
treating it as an independent and separate loop. C
This voltage source will circulate a current of

. . _ ) 20V—+ 30
20/3 amp in the resistor, and will not appear in ==
the calculations. oB
Fig. 2.83 (a)
D A
6Q A
[ O o
80V ¢ I:T 80/6 amp
e 20V 30
B
_____ O %
Fig. 2.83 (b) Fig. 2.83 (c)

This step does not affect the circuit connected to A-B.
Further steps are shown in Fig. 2.83 (b) and (c)

Tutorial Problems No. 2.3

1. Using Maxwell’s loop current method, calculate the output voltage V, for the circuits shown in

Fig. 2.84. [(@) 4V (b) - 150/7 V () V, = 0 (d) V, = 0]
2 6
10A
AW o+ AMA AMA o+
2 2 4
3A 1
(MDsa1z 13 (Hn At 53 53 4
10V
o= _ o=
(a) (b)
1
—AAMN o}
) &
+ + 1 1
1
V;
()V' 1z % C)V +7 -
-1 - | 1
1 _
—AMN o)
(©) (d)

Fig. 2.84
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(jzsv 2

5 % 10 B2
— AW M A
4 == B

1
4 50V<
+

Fig. 2.85

AM—

+

3

(@

2. Using nodal voltage method, find the magnitude and direction of current I in the network of Fig. 2.85.

3. By using repeated source transformations, find the value of voltage v in Fig. 2.87 (a).

5 |4 3
] 2
20V
. 4
TI0V 3
Fig. 2.86
[8VI]
2
Wv .
—>12

20A

ORI

Fig. 2.87

2.87 (b).
Fig. 2.86.
[Hint : Check by source conversion.]

a 2. b

G 7A 35

AMW—

10§ SACD

L

Fig. 2.88

ohms.

[Hint. :

®)

. Use source transformation technique to find the current flowing through the 2 Q resistor in Fig.

[10 A]

. With the help of nodal analysis, calculate the values of nodal voltages V, and V, in the circuit of

[7.1V; =3.96 V]

. Use nodal analysis to find various branch currents in the circuit of Fig. 2.88.

[e=2A;1,=5A1,=0]

a 025 p
AL
<D3A §o.5s 1s§ 2A<D
T
Fig. 2.89

7. With the help of nodal analysis, find V, and V, and various branch currents in the network of Fig. 2.85.

[5V,25V; 1, =25A;1,,=05A; I, =25A]

8. By applying nodal analysis to the circuit of Fig. 2.90, find I, I, and I,.. All resistance values are in

_22 _10 _ -8
[ap =57 A log =5 ATy =57 Al

It would be helpful to convert resistance into conductances.]
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9. Using nodal voltage method, compute the power dissipated in the 9-Q resistor of Fig. 2.91. [81 W]

a 05 p 05 3 9

CDéA §0.25 0.5 0.25 <D4A Cjzw §4 35 QDéA

d
Fig. 2.90 Fig. 2.91
10. Write equilibrium equations for the network in Fig. 2.92 on nodal basis and obtain the voltage V,, V,
and V. All resistors in the network are of 1 Q [Network Theory and Fields, Madras Univ.]
11. By applying nodal method of network analysis, find current in the 15 Qresistor of the network shown
in Fig. 2.93. [3.5 A] [Elect. Technology-1, Gwalior Univ.]
14 15 14 20 15 10

— WW—— AW AMAN

Tiov § % T400 V §8° §90 200V T

Fig. 2.92 Fig. 2.93

2.15. Ideal Constant-Voltage Source

It is that voltage source (or generator) whose output voltage remains absolutely constant what-
ever the change in load current. Such a voltage source must possess zero internal resistance so that
internal voltage drop in the source is zero. In that case, output voltage provided by the source would
remain constant irrespective of the amount of current drawn from it. In practice, none such ideal
constant-voltage source can be obtained. However, smaller the internal resistance r of a voltage
source, closer it comes to the ideal sources described above.

4

<
W
=
\\
—"
<
20-200K
=

Fig. 2.94

Suppose, a 6-V battery has an internal resistance of 0.005 Q[Fig. 2.94 (a)]. When it supplies no
current i.e. it is on no-load, V, = 6 V i.e. output voltage provided by it at its output terminals A and B
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is 6 V. If load current increases to 100 A, internal drop = 100 x 0.005 = 0.5 V. Hence, V,=6-0.5
=55V

Obviously an output voltage of 5.5 —6 V can be considered constant as compared to wide
variations in load current from 0 A ot 100 A.

2.16. Ideal Constant-Current Source

It is that voltage source whose internal resistance is infinity. In practice, it is approached by a
source which posses very high resistance as compared to that of the external load resistance. As
shown in Fig. 2.94 (b), let the 6-V battery or voltage source have an internal resistance of 1 M Qand
let the load resistance vary from 20 K to 200 K. The current supplied by the source varies from
6.1/1.02=59 1 Ato6/1.2=5pu A. Asseen, even when load resistance increases 10 times, current
decreases by 0.9 uA. Hence, the source can be considered, for all practical purposes, to be a constant-
current source.

2.17. Superposition Theorem

Il — y <—]2 —>]1' 4 —>I2
YV Yy . S VY VY W4
25Q 2Q 2.5Q 2Q
—6v 69%1 V= eV 6Q§ll' 1Q§
0.5Q 1Q 0.5
h L L I
- B > - B -
(a) @
Fig. 2.95

According to this theorem, if there are a number of e.m.fs. acting simultaneously in any linear
bilateral network, then each e.m.f. acts independently of the others i.e. as if the other e.m.fs. did not
exist. The value of current in any conductor is the algebraic sum of the currents due to each e.m.f.
Similarly, voltage across any conductor is the algebraic sum of the voltages which each e.m.f would
have produced while acting singly. In other words, current in or voltage across, any conductor of the
network is obtained by superimposing the currents and voltages due to each e.m.f. in the network. It
is important to keep in mind that this theorem is applicable only to linear networks where current is

, linearly related to voltage as per Ohm’s law.

! A b =— Hence, this theorem may b :
A AN , y be stated as follows :
25Q 2Q In a network of linear resistances containing more
than one generator (or source of e.m.f.), the cur-
rent which flows at any point is the sum of all the
% 05Q 60 %l]" 12v — currents which would flow at that point if each
10 generator where considered separately and all the
other generators replaced for the time being by

resistances equal to their internal resistances.

- - Explanation
Fig. 2.96 In Fig. 2.95 (a) I;, 1, and I represent the values of
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currents which are due to the simultaneous action of the two sources of e.m.f. in the network. In Fig.
2.95 (b) are shown the current values which would have been obtained if left-hand side battery had
acted alone. Similarly, Fig. 2.96 represents conditions obtained when right-hand side battery acts
alone. By combining the current values of Fig. 2.95 (b) and 2.96 the actual values of Fig. 2.95 (a) can
be obtained.

Obviously, I, =1, 4," ", I, =1, ", I=1" +1" 7.

Example 2.46. In Fig. 2.95 (a) let battery e.m.fs. be 6 V and 12 V, their internal resistances
0.5Qand 1 Q The values of other resistances are as indicated. Find the different currents flowing
in the branches and voltage across 60-ohm resistor.

Solution. In Fig. 2.95 (b), 12-volt battery has been removed though its internal resistance of
1 Qremains. The various currents can be found by applying Ohm’s Law.

It is seen that there are two parallel paths between points A and B, having resistances of 6 Qand
2+1)=3Q

equivalent resistance 316=2Q
Total resistance 05+25+2=5Q . 1/ =6/5=12A.
This current divides at point A inversely in the ratio of the resistances of the two parallel paths.
[ = 12x(3/9)=0.4A. Similarly,1,” =1.2x(6/9)=0.8A

In Fig. 2.96, 6 volt battery has been removed but not its internal resistance. The various currents
and their directions are as shown.

The equivalent resistance to the left to points Aand Bis=31|6=2Q
total resistance = 1+42+42=5Q . I "=12/5=24A
At point A, this current is divided into two parts,
[" =24x3/9=08A, 1 '=24x6/9=16A
The actual current values of Fig. 2.95 (a) can be obtained by superposition of these two sets of
current values.

I I’ =1, "=1.2-1.6 =-0.4 A (itis a charging current)
I, =1, -1, =24-08=16A

Il =1+l '=04+08=12A
\oltage drop across 6-ohm resistor =6 x 1.2 =72V

Example 2.47. By using Superposition Theorem, find the current in resistance R shown in Fig.
2.97 (a)
R,=0.005QR,=0.004QR=1QFE =205V,E,=215V
Internal resistances of cells are negligible. (Electronic Circuits, Allahabad Univ. 1992)

Solution. In Fig. 2.97 (b), E, has been removed. Resistances of 1 Qand 0.04 Qare in parallel
across poins Aand C. R, =1]0.04 =1 x 0.04/1.04 = 0.038 Q This resistance is in series with
0.05Q Hence, total resistance offered to battery E; = 0.05 + 0.038 = 0.088 Q | =2.05/0.088 = 23.3
A. Current through 1-Qresistance, I, = 23.3 x 0.04/1.04 = 0.896 A from C to A.

When E, is removed, circuit becomes as shown in Fig. 2.97 (c). Combined resistance of paths
CBAand CDAis=1]0.05=1x 0.05/1.05 = 0.048 Q. Total resistance offered to E, is = 0.04 + 0.048
=0.088 Q Current | = 2.15/0.088 = 24.4 A. Again, |, = 24.4 x 0.05/1.05 = 1.16 A.

To current through 1-Qresistance when both batteries are present

= 1, +1,=0.896 + 1.16 = 2.056 A.
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0.05 p 205V 005 p 205V 0.05
E, B
A C 4 C 4 C
0.04 2.15V 0.04 0.04 2,15V i
_/\/\/\_| |_
Il / E2 ]2 /
R=1 1 i
AMAN AN AN
D D D
(a) (b) (c)
Fig. 2.97

Example 2.48. Use Superposition theorem to find current I in the circuit shown in Fig. 2.98 (a).
All resistances are in ohms. (Basic Circuit Analysis Osmania Univ. Jan/Feb 1992)

Solution. InFig. 2.98 (b), the voltage source has been replaced by a short and the 40 A current
sources by an open. Using the current-divider rule, we get I, = 120 x 50/200 = 30 A.

In Fig. 2.98 (c), only 40 A current source has been considered. Again, using current-divider rule
I, =40 x 150/200 = 30 A.

In Fig. 2.98 (d), only voltage source has been considered. Using Ohm’s law,
I, = 10/200 = 0.05 A.

Since I, and I, cancel out, 1 = 1,=0.005 A.
10V v
_Q+ —0 0— o _O+ o
(D §50 §150 <D (D 50 %50 50§ 150 (D 50 2150
120A 40A 120A 40A
[ 4 5 5
- > > —0 - - (o - 0
(@ () (© (@)

Fig. 2.98

Example 2.49. Use superposition theorem to determine the voltage v in the network of Fig.
2.99(a).

Solution. As seen, there are three independent sources and one dependent source. We will find
the value of v produced by each of the three independent sources when acting alone and add the three
values to find v. It should be noted that unlike independent source, a dependent source connot be set
to zero i.e. it cannot be “killed” or deactivated.

Let us find the value of v, due to 30 V source only. For this purpose we will replace current
source by an open circuit and the 20 V source by a short circuit as shown in Fig. 2.99 (b). Applying
KCL to node 1, we get

B0-v) Vi N (/3-vy)
6 3 2

Let us now keep 5 A source alive and “kill’ the other two independent sources. Again applying

KCL to node 1, we get, from Fig. 2.99 (c).

=0 or

V=6V
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6 A 6 ® 2 6 ® 2

Owv O3 1) Dy a8 3¢ 251 K

- SA Z

(a) ) (c)
2 Fig. 2.99
ﬁ_5_v_2+u:0 or V2:—6V 6 4L _ 2
6 3 2 ’—W,
Letus now “kill” 30 V source and 5 A source and find v, 20V
due to 20 V source only. The two parallel resistances of 6 Q N
and 3 Q can be combined into a single resistance of 2 Q + v,
Assuming a circulating current of i and applying KVL to the 3 ?gs D 3

indicated circuit, we get, from Fig. 2.100.

—2i—20—2i—%(—2i):o or i=6A

Hence, according to Ohm’s law, the component of v that Fig. 2.100
corresponds to 20 V source isv, =2 x6=12V. .v=v,
TV, +V;=6-6+12=12V.

Example 2.50. Using Superposition theorem, find the current through the 40 W resistor of the
circuit shown in Fig. 2.101 (a). (F.Y. Engg. Pune Univ. May 1990)

Solution. We will first consider when 50 V battery acts alone and afterwards when 10-V battery
is alone in the circuit. When 10-V battery is replaced by short-circuit, the circuit becomes as shown
in Fig. 2.101 (b). It will be seen that the right-hand side 5 Qresistor becomes connected in parallel
with 40 Qresistor giving a combined resistance of 5 || 40 = 4.44 Qas shown in Fig. 101 (c). This4.44
Q resistance is in series with the left-hand side resistor of 5 Q giving a total resistance of
(5+ 4.44) =9.44 Q0 As seen there are two resistances of 20 Qand 9.44 Qconnected in parallel. In
Fig. 2.101 (c) current | =50/9.44 = 5.296 A.

20 20
MW
5 5
TV Za
(@) () (c)

Fig. 2.101
At point A in Fig. 2.101 (b) there are two resistances of 5 Q and 40 Q connected in parallel,
hence, current | divides between them as per the current-divider rule. If I, is the current flowing
through the 40 Qresistor, then
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_ 5 S
=1 510 5.296 45 0.589 A.

In Fig. 2.102 (a), 10 V battery acts 20 20
alone because 50-V battery has been re- ANN————— I—W\A«—
moved and replaced by a short-circuit.

As in the previous case, there are two > M%_ B -4/%»_
parallel branches of resistances 20 Q and 1 |
9.44 Qacross the 10-V battery. Current | 40 10V 4.44 TIOV
through 9.44 Q branch is | = 10/9.44 =
1.059 A. This current divides at point B (a) (b)
between 5 Q resistor and 40 Q resistor. -

Fig. 2.102

Current through 40 Qresistor 1, = 1.059 x
5/45=0.118 A.

According to the Superposition theorem, total current through 40 Qresistance is
=1,+1,=0.589 + 0.118 = 0.707 A.

Example 2.51. Solve for the power delivered to the 10 Qresistor in the circuit shown in Fig.
2.103 (a). All resistances are in ohms. (Elect. Science - I, Allahabad Univ. 1991)

Solution. The 4-A source and its parallel resistance of 15 Q can be converted into a voltage
source of (15 x 4) =60 V in series with a 15 Qresistances as shown in Fig. 2.103 (b).

Now, we will use Superposition theorem to find current through the 10 Qresistances.
When 60 -V Source is Removed S5 4 2

A,
When 60 -V battery is removed o |
the total resistance asseenby 2 V bat- 1 4A jl 15
-|- 2V

teryis=1+10 | (15 +5) = 7.67 Q S0 Sis CD

The battery current = 2/7.67 A, |, §10
=0.26 A. Atpoint A, this current is
divided into two parts. The current B
passing through the 10 Q resistor (@) (b)
from A to B is Fig. 2.103

I, =0.26 x (20/30) =0.17 A

When 2-V Battery is Removed

Then resistance seen by 60 V battery is =20 + 10 || 1 = 20.9 Q. Hence, battery current = 60/20.9
=2.87 A. This current divides at point A. The current flowing through 10 Qresistor from A to B is

I, = 287x1/(1+10)=0.26 A
Total current through 10 Qresistor due to two batteries acting together is = I, + 1, = 0.43 A.
Power delivered to the 10 Q resistor = 0.43% x 10 = 1.85 W.

Example 2.52. Compute the power dissipated in the 9-W resistor of Fig. 2.104 by applying the
Superposition principle. The voltage and current sources should be treated as ideal sources. All
resistances are in ohms.

60 V
_|_

Solution. As explained earlier, an ideal constant-voltage sources has zero internal resistances
whereas a constant-current source has an infinite internal resistance.
(i) When Voltage Source Acts Alone

This case is shown is in Fig. 2.104 (b) where constant-current source has been replaced by an
open-circuit i.e. infinite resistance (Art. 2.16). Further circuit simplification leads to the fact that total
resistances offered to voltage source is = 4 + (12 || 15) = 32/3 Qas shown in Flg. 2.104 (c).
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Hence current =32 +32/3 =3 A. Atpoint Ain Fig. 2.104 (d), this current divides into two parts.
The part going alone AB is the one that also passes through 9 Qresistor.

I = 3x12/(15+12)=4/3 A

B Y
3134
%12 . 9§ %12
32V
C B
(©
R
3A134
W 0 o
32V
C B
(©)

Fig. 2.104
(i) When Current Source Acts Alone

As shown in Fig. 2.105 (a), the voltage source has been replaced by a short-circuit (Art 2.13).
Further simplification gives the circuit of Fig. 2.105 (b).

M% 4 6 4 f’: 2A
%12 = <D4A %9 %3 4A<D %9
Short
Circuit
(a) @
Fig. 2.105

The 4 - A current divides into two equal parts at point A in Fig. 2.105 (b). Hence | =4/2=2A.
Since both I” and I” * flow in the same direction, total current through 9-Qresistor is
I=I"+I" " = (4/3) +2=(10/3) A
Power dissipated in 9 Qresistor = IR = (10/3)2 x9=100 W

Example 2.53(a). With the help of superposition theorem, obtain the value of current | and
voltage V in the circuit of Fig. 2.106 (a).

Solution. We will solve this question in three steps. First, we will find the value of I and V, when
current source is removed and secondly, when voltage source is removed. Thirdly, we would com-
bine the two values of | and V, in order to get their values when both sources are present.
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First Step

As shown in Fig. 2.106 (b), current source has been replaced by an open-circuit. Let the values
of current and voltage due to 10 V source be I, and V,. Asseen |, =0and V,, =10 V.

Second Step

As shown in Fig. 2.106 (c), the voltage source has been replaced by a short circuit. Here
l,=-5Aand Vy, =5%x10=50 V.

[ 10Q [15Q L 150
———WW———+ — W o+ ——AWW— +

<>1 oV 5A Q) I 10V Vo1 5A CD Yoz

1 : 1

(a) (b) (c)

Fig. 2.106
Third Step
By applying superposition theorem, we have
I =1, +1,=0+(-5=-5A
Vo = Vg +Vy, =10+50=60V
Example 2.53(b). Using Superposition theo-

—)
rem, find the value of the output voltage V, in the U
circuit of Fig. 2.107. 4A

Solution. As usual, we will break down the MMN—— +
problem into three parts involving one source each. 3Q

(a) When 4 Aand 6 V sources are killed* 2Q

As shown in Fig. 2.198 (_a), 4 A source has 6A <f> %1 Q 7
been replaced by an open circuit and 6 V source by

a short-circuit. Using the current-divider rule, we
find current i, through the 2 Qresistor =6 x 1/(1 +
2+3)=1A .V, =1x2=2V.

(b) When 6 Aand 6 V sources are killed

As shown in Fig. 2.108 (b), 6 A sources has
been replaced by an open-circuit and 6 V source by a short-circuit. The current i, can again be found
with the help of current-divider rule because there are two parallel paths across the current source.
One has a resistance of 3 Qand the other of (2 + 1) =3 Q It means that current divides equally at
point A.

Hence, i,=4/2=2A .. V,=2x2=4V

(c) When 6 A and 4 A sources are killed

As shown in Fig. 2.108 (c), drop over 2 Qresistor = 6 x 2/6 =2 V. The potential of point B with
respect to point Ais=6 -2 =+4V. Hence, Vo, =—4 V.

Fig. 2.107

*  The process of setting of voltage source of zero is called killing the sources.
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According to Superposition theorem, we have
Vo = Vg Vo +Vgg=2+4-4=2V

— AMM—+ (—) ; A S

A — -
3 %

2Q

o1
§1 VOZ ~
2 by l 6V
+

(a) (b) (c)
Fig. 2.108

Example 2.54. Use Superposition theorem, to find the voltage V in Fig. 2.109 (a).

O T

40 4 I12V 40 Sc
AMAL MM |I 04 AMAN ’\/\/\/‘ o—0—04
o
Tisv 1(); Q 2.5A Vo sy 10% %c Vi
OB OB
(@) (b)
Fig. 2.109

Solution. The given circuit has been redrawn in Fig. 2.109 (b) with 15 - V battery acting alone
while the other two sources have been killed. The 12 - V battery has been replaced by a short-circuit
and the current source has been replaced by an open-circuit (O.C) (Art. 2.19). Since the output
terminals are open, no current flows through the 4 Q resistor and hence, there is no voltage drop
across it. Obviously V, equals the voltage drop over 10 Qresistor which can be found by using the
voltage-divider rule.

V, = 15x10/(40+10) =3V

Fig. 2.110 (a) shows the circuit when current source acts alone, while two batteries have been

killed. Again, there is no current through 4 Q resistor. The two resistors of values 10 Q and 40 Qare

V N s ©

=
=2 = |
.
Fig. 2.110

in paraIIeI across the current source. Their combined resistances is 10 || 40 =8 Q
V, = 8x2.5=20V with point A positive.
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Fig. 2.110 (b) shows the case when 12 -V battery acts alone. Here, V,=-12 V*. Minus sign has
been taken because negative terminal of the battery is connected to point A and the positive terminal
to point B. As per the Superposition theorem,

V =V, +V,+V;=3+20-12=11V

Example 2.55. Apply Superposition theorem to the circuit of Fig. 2.107 (a) for finding the
voltage drop V across the 5 Q resistor.

Solution. Fig. 2.111 (b) shows the redrawn circuit with the voltage source acting alone while the
two current sources have been ‘killed’ i.e. have been replaced by open circuits. Using voltage-
divider principle, we get

V,=60x5/(5+2+3)=30V. It would be taken as positive, because current through the 5 Q
resistances flows from A to B, thereby making the upper end of the resistor positive and the lower end
negative.

6A
@ o O.C. o
A A
AN AN
2 2

Oz oc vz

2A — —
60 V 60 V

(a) @)

Fig. 2.111

Fig. 2.112 (a) shows the same circuit with the 6 A source acting alone while the two other sources
have been ‘killed’. It will be seen that 6 A source has to parallel circuits across it, one having a
resistance of 2 Qand the other (3 +5) = 8 & Using the current-divider rule, the current through the
5Qresistor=6x2/(2+3+5)=12A.

QéA

\_/ T

A AW A

2
3
o + +
0C. 5 ?VQ @ 5iv3
o _ 2A -
B B
(i

b

o.C. T
AN
2
Ne
)

Fig. 2.112

*  Because Fig. 2.110 (b) resembles a voltage source with an internal resistance =4 + 10 || 40 = 12 Qand
which is an open-circuit.
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r=0-
10V
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V,=12x5=6V. Itwould be taken negative because current is flowing from B to A. i.e.

point B is at a higher potential as compared to point A. Hence, V, = —6 V.

Fig. 2.112 (b) shows the case when 2-A source acts alone, while the other two sources are dead.

Using Superposition principle, we get
V=V, +V,+V;=30-6-5=19V

As seen, this current divides equally at point B, because the two parallel paths have equal resistances

of 5 Qeach. Hence, V,=5x1=5V. It would also be taken as negative because current flows from
B to A. Hence, V;=-5V.

Example 2.56. (b) Determine using superposition theorem, the voltage across the 4 ohm resis-

2 ohm 8 ohm 13 F

[Nagpur University, Summer 2000]

AARIAA Lt
2 ohm I, 8 ohm VI,
TS B9 1y 4ohm g2 ohm
s
G | H .
C
Fig. 2.113 (a) Fig. 2.113 (b)
Solution. Superposition theorem needs one source acting at a time.
Step | :  De-acting current source.
The circuit is redrawn after this change in Fig. 2.113 (b)
_ 10 _ 10 _
I, = - X@+2) 2+i0 =2.059 amp
4+@8+2) 14
2.059 10 . o
I, = 1 1.471 amp, in downward direction
Step Il : De-activate the voltage source.

The circuit is redrawn after the change, in Fig. 2.113 (c)
With the currents marked as shown.

I, = 2l relating the voltage drops in Loop ADC.

2 ohm 8 ohm |
A e D s E B
Id Ic Ia
§4OMn gzomﬂ EBTSAnm
+
10V —
O
0 G H C
Fig. 2.113 (¢)
Thus I, =3 1..
Resistance of parallel combination of
2x4
= ——=1333Q
2 and 4 ohms W

Resistance for flow of I, = 8 + 1.333 =9.333 Q
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The 5-amp current from the sources gets divided into I, (=3 1) and |, at the node F.

X _
l, = 31,2 5o x5=0.8824

I, =0.294 amp, in downward direction.

Apply superposition theorem, for finding the total current into the 4-ohm reistor
= Current due to Current source + Current due to Voltage source

=0.294 + 1.471 = 1.765 amp in downward direction.

Check. In the branch AD,

The voltage source drives a current from A to D of 2.059 amp, and the current source drives a
current of 1, (= 21.) which is 0.588 amp, from D to A.

The net current in branch AD

= 2.059 —-0.588 = 1.471 amp
With respect to O, A is at a potential of + 10 volts.
Potential of D with respect to O

= (net current in resistor) x 4

= 1.765 x 4 =+ 7.06 volts
Between A and D, the potential difference is (10 —7.06) volts
Hence, the current through this branch

10-7.06
2

This is the same as eqn. (a) and hence checks the result, obtained previously.
Example 2.57. Find the current flowing in the branch XY of the circuit shown in Fig. 2.114 (a)
by superposition theorem. [Nagpur University, April 1996]

Solution. Asshown in Fig. 2.114 (b), one source is de-activated. Through series-parallel combina-
tions of resistances, the currents due to this source are calculated. They are marked as on Fig. 2.114 (b).

Electrical Technology

Step I11.

..eqgn. (a)

=1.47 amp from Ato D ...egn (b)

1Q
Y L WID: SEPVVvy ¥ 2Q X
133 A|1.33 A 2.67 A 4A 133A
==
;_ZOV 30 ‘o
1Q 1Q 3Q 6Q
—— 20V — 20V
133 A T 2.67 A
Y 2Q Y
Fig. 2.114 (a) Fig. 2.114 (b)
2Q X
MWV
4 A 133 A
— 20V %39 -
4 A 2.67 A 1.33 A
Y

Fig. 2.114 (c)
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In the next step, second source is de-activated as in Fig. 2.114 (c). Through simple series parallel
resistances combinations, the currents due to this source are marked on the same figure.

According to the superposition theorem, the currents due to both the sources are obtained after
adding the individual contributions due to the two sources, with the final results marked on Fig. 2.114
(a). Thus, the current through the branch XY is 1.33 A from Y to X.

Example 2.58. Find the currents in all the resistors by Superposition theorem in the circuit
shown in Fig. 2.115 (a). Calculate the power consumed. [Nagpur University, Nov. 1996]

Solution. According to Superposition theorem, one source should be retained at a time,
deactivating remaining sources. Contributions due to individual sources are finally algebraically
added to get the answers required. Fig. 2.115 (b) shows only one source retained and the resultant
currents in all branches/elements. In Fig. 2.115 (c), other source is shown to be in action, with
concerned currents in all the elements marked.

To get the total current in any element, two component-currents in Fig. 2.115 (b) and Fig. 2.115
(c) for the element are to be algebraically added. The total currents are marked on Fig. 2.115 (a).

A B 28Q C

1Q
VWA WWAWY 2 AW L A?wsxzm
2.857 A V
0.7147 A 3.572A 1Q
{20V
- * 20
gz 10V 020 30 0.7143
0.5Q 10V
‘ 2.143 A
WA AAAW— D
1Q 0 50 D 1.429 A 0 50
Fig. 2.115 () Fig. 2.115 (b)
All resistors are in ohms
A B
VWMWY JWV\A/V—
10 +
20V
30 =
1.429 A 2.143 A
0.7143 A

Fig. 2.115 (¢)
Power loss calculations. (i) from power consumed by resistors :
Power = (0.7147% x 4) + (3.572% x 2)+(2.875° x 8) = 92.86 watts
(if) From Source-power.
Power = 10 x 3.572 + 20 x 2.857 = 92.86 watts

Tutorial Problems No. 2.4.

1. Apply the principle of Superposition to the network shown in Fig. 2.116 to find out the current in the
10 Q resistance. [0.464 A] (F.Y. Engg. Pune Univ.)

2. Find the current through the 3 Q resistance connected between C and D Fig. 2.117.
[LAfrom C to D] (FY. Engg. Pune Univ.)
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3Q 1.5Q c 3Q y B
AN AN AMAN—
l AN /5
6V 4V 12% §3
10 Q% §3 Q §3 Q. = = —
0 30 9V 45V 24V ¢ 18V
D D
Fig. 2.116 Fig. 2.117 Fig. 2.118

3. Using the Superposition theorem, calculate the magnitude and direction of the current through each
resistor in the circuit of Fig. 2.118. [1,=6/7A;1,=10/7A; 1, =16/7 A]

4. For the circuit shown in Fig. 2.119 find the

48 Q
current in R = 8 Q resistance in the branch AB AMW——
using superposition theorem. 4 ,\?\Af/{ 8Q
[0.875 A] (F.Y. Engg. Pune Univ. )
5. Apply superposition principle to compute "‘\é\/\s/;—
current in the 2-Q resistor of Fig. 2.120. All =5, §8 Q 4Q %5 Q §12 Q
resistors are in ohms. [l.,,=5A] [
6. Use Superposition theorem to calculate the volt- v T
age drop across the 3 Q resistor of Fig. 2.121. B
All resistance values are in ohms. [18 V] Fig. 2.119
2
it Y-
15A
1 2
<D24A %4 %6 6AG ANAN AMN
+
onv ®ISA 3 %
= |
Fig. 2.120 Fig. 2.121

7. With the help of Superposition theorem, compute the current |, in the circuit of Fig. 2.122. All
resistances are in ohms.

ohms.

[I, =-3 A]
== i o.c. 7
=L ANANA == AAAN
2 % 2
—= 3 — % 3
o.c s ~ i @ S V5 i
(=) = 2A =
SC } SC
B B
) g2y)
Fig. 2.122 Fig. 2.123
8. Use Superposition theorem to find current I in the circuit of Fig. 2.123. All resistances are in

[100 A]

Find the current in the 15 Q resistor of Fig. 2.124 by using Superposition principle. Numbers
represent resistances in ohms.

[2.8 A]
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10. Use Superposition principle to find current in the 10-Q resistor of Fig. 2.125. All resistances are in
ohms. [1A]

11. State and explain Superposition theorem. For the circuit of Fig. 2.126.
(a) determine currents I, I, and 1, when switch S is in position b.
(b) using the results of part (a) and the principle of superposition, determine the same currents with
switch S in position a.
[(@) 15A,10 A, 25 A (b) 11 A, 16 A, 27 A] (Elect. Technology Vikram Univ.)

30 25 15 I I
A AN AMA <! -

125V

T30V 515 Tsov T 10% b I . 43
OV T : K S O\

T20V

Fig. 2.124 Fig. 2.125 Fig. 2.126

2.18. Thevenin Theorem

R
‘Rj‘ ‘E A [The Thevenin A
Lo N
vy vy voltage e is the open
1 circuit voltage at r
e terminals A and B Thevenin

VaB

>R
: 3 o.pen. The Thevenin
circuit | resistance r is the
resistance seen at
AB with all voltage
sources replaced by
. short circuits and all
Thevenin Theorem current sources
replaced by open
circuits.

V4 equivalent

circuit

AAA

wo™

It provides a mathematical technique for replacing a given network, as viewed from two output
terminals, by a single voltage source with a series resistance. It makes the solution of complicated
networks (particularly, electronic networks) quite quick and easy. The application of this extremely
useful theorem will be explained with the help of the following simple example.

Ry

C A C A
E R N
Tr R2§ RL% ;r R2§ <= J=
—
o __
D B D B
(@) (b) (c)

Fig. 2.127
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Suppose, it is required to find current flowing through load resistance
R, as shown in Fig. 2.127 (a). We will proceed as under :

1. Remove R, from the circuit terminals A and B and redraw the cir-
cuit as shown in Fig. 2.127 (b). Obviously, the terminals have
become open-circuited.

2. Calculate the open-circuit voltage V, which appears across termi-
nals A and B when they are open i.e. when R, is removed.

As seen, V. = drop across R, = IR, where | is the circuit current
when A and B are open.

E ER, . .
I = m S V= IR, = W [r is the internal
resistance of battery] M. L. Thevenin

Itis also called ‘Thevenin voltage’ V..
3. Now, imagine the battery to be removed from the circuit, leaving its internal resistance r
behind and redraw the circuit, as shown in Fig. 2.127 (c). When viewed inwards from
terminals A and B, the circuit consists of two parallel paths : one containing R, and the other
containing (R, + r). The equivalent resistance of the network, as viewed from these termi-
nals is given as
R, (R, + 1)
R, + (R, +7T)
This resistance is also called,* Thevenin resistance R, (though, it is also sometimes
written as R; or R).
Consequently, as viewed from terminals A and
B, the whole network (excluding R,) can be reduced
to a single source (called Thevenin’s source) whose
e.m.f. equals V_(or V) and whose internal resis- iRt
h

R =R, [[(R +r)=

1 A

O

tance equals R, (or R;) as shown in Fig. 2.128.
4. R, is now connected back across terminals A and B T
from where it was temporarily removed earlier. -

Current flowing through R, is given by Thevenin

Source -
Vin -

Rin + R

It is clear from above that any network of resistors and
voltage sources (and current sources as well) when viewed from any points A and B in the network,
can be replaced by a single voltage source and a single resistance** in series with the voltage source.

After this replacement of the network by a single voltage source with a series resistance has been
accomplished, it is easy to find current in any load resistance joined across terminals A and B. This
theorem is valid even for those linear networks which have a nonlinear load.

Hence, Thevenin’s theorem, as applied to d.c. circuits, may be stated as under :

The current flowing through a load resistance R, connected across any two terminals A and
B of a linear, active bilateral network is given by V. || (R; + R ) where V. is the open-circuit
voltage (i.e. voltage across the two terminals when R, is removed) and R; is the internal resistance
of the network as viewed back into the open-circuited network from terminals A and B with all
voltage sources replaced by their internal resistance (if any) and current sources by infinite
resistance.

*  After the French engineer M.L. Thevenin (1857-1926) who while working in Telegraphic Department
published a statement of the theorem in 1893.
** Or impedance in the case of a.c. circuits.

& O

|
Fig. 2.128
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2.19. How to Thevenize a Given Circuit ?

1. Temporarily remove the resistance (called load resistance R ) whose current is required.

2. Find the open-circuit voltage V., which appears across the two terminals from where
resistance has been removed. Itis also called Thevenin voltage V,;..

3. Compute the resistance of the whose network as looked into from these two terminals after
all voltage sources have been removed leaving behind their internal resistances (if any) and
current sources have been replaced by open-circuit i.e. infinite resistance. It is also called
Thevenin resistance Ry, or T;.

4. Replace the entire network by a single Thevenin source, whose voltage is V, or V . and
whose internal resistance is Ry, or R;.

5. Connect R, back to its terminals from where it was previously removed.
6. Finally, calculate the current flowing through R, by using the equation,
I = Vi/Ry+R) or 1=V J/R;+R)
Example 2.59. Convert the circuit shown in Fig. 2.129 (a), to a single voltage source in series
with a single resistor. (AMIE Sec. B, Network Analysis Summer 1992)

Solution. Obviously, we have
to find equivalent Thevenin circuit.
For this purpose, we have to cal-
culate (i) Vy, or Vg and (ii) Ry, or

E C

A A
—0 —0

+ +

Rag:
15V 4
With terminals A and B open, CD é

the two voltage sources are
connected in subtractive series %8
because they oppose each other. +

Net voltage around the circuit is

WWA

8/3

>35/3 \Y

|
I\t
_/
S
<
VERS:

(15-10) =5V and total resistance F D T 3B T3
is (8 + 4) = 12 Q Hence circuit (a) (b)
currentis=5/12 A. Drop across 4

Qresistor =4 x 5/12 =5/3 V with Fig. 2.129

the polarlty as shown in Fig. 2.129 (a).
Vig = Vi, =+10+5/3=35/3V.
InC|dentIy, we could also find V5 while going along the parallel route BFEA.
Drop across 8 Qresistor = 8 x 5/12 =10/3 V. V5 equal the algebraic sum of voltages met on the
way from B to A. Hence, V,; = (-=10/3) + 15 = 35/3 V.
As shown in Fig. 2.129 (b), the single voltage source has a voltage of 35/3 V.

For finding Ry,, we will replace the two voltage sources by short-circuits. In that case, Ry, =R,
=48=83Q

Example 2.60. State Thevenin’s theorem and give a proof. Apply this theorem to calculate the
current through the 4 Q resistor of the circuit of Fig. 2.130 (a).

(A.M.L.E. Sec. B Network Analysis W.)

Solution. Asshown in Fig. 2.130 (b), 4 Q resistance has been removed thereby open-circuiting
the terminals A and B. We will now find V,; and R, which will give us V,, and Ry, respectively. The
potential drop across 5 Q resistor can be found with the help of voltage-divider rule. Its value is
=15x 5/(5+10)=5V.
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=
i
=
™
oy
S
W
=

@ (®) (©

Fig. 2.130

For finding V .5, we will go from point B to point A in the clock- 4
wise direction and find the algebraic sum of the voltages met on the
way.

- Vi = 6+5=-1V. 1073

It means that point A is negative with respect to point E, or point _ 4%
B is at a higher potential than point A by one volt.

In Fig. 2.130 (c), the two voltage source have been short-
circuited. The resistance of the network as viewed from points A and
B is the same as viewed from points A and C.

. Rag = Rac=51110=10/3 Q

Thevenin’s equivalent source is shown in Fig. 2.131 in which 4
Q resistor has been joined back across terminals A and B. Polarity of the voltage source is worth
nothing.

Fig. 2.131

-1 _3_
I = (10/3)+4—22 0.136 A From Eto A

Example 2.61. With reference to the network of Fig. 2.132 (a), by applying Thevenin’s theorem
find the following :
(i) the equivalent e.m.f. of the network when viewed from terminals A and B.
(ii) the equivalent resistance of the network when looked into from terminals A and B.
(iii) current in the load resistance R, of 15 Q  (Basic Circuit Analysis, Nagpur Univ. 1993)

Solution. (i) Current in the network before load resistance is connected [Fig. 2.132 (a)]
= 24/(12+3+1)=15A
voltage across terminals AB =V .=V, =12x 15=18V

Hence, so far as terminals A and B are concerned, the network has an e.m.f. of 18 volt (and not
24 V).

(ii) There are two parallel paths between points Aand B. Imagine that battery of 24 V is removed
but not its internal resistance. Then, resistance of the circuit as looked into from point A and B is
[Fig. 2.132 (c)]

R, = R, =12x 4/(12+4)=3Q

I
(iil) When load resistance of 15 Q is connected across the terminals, the network is reduced to
the structure shown in Fig. 2.132 (d).
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3 3 3
AW < AW 4 AW < | L ¢
T
3
.y 123 152 =5,y 12§ Ve §1 122 <=r, i 15
r=1Q r=1Q
l TS v
O O
B B B B
(@) (®) (© (d)

Fig. 2.132

I = Vi/(Ry,+R)=18/(15+3)=1A
Example 2.62. Using Thevenin theorem, calculate the current flowing through the 4 Q resistor

of Fig. 2.133 (a).
Solution. (i) Finding V,,

If we remove the 4-Q resistor, the circuit becomes as shown in Fig. 2.133 (b). Since full 10 A
current passes through 2 Q resistor, drop across itis 10 x 2=20V. Hence, Vg =20 V with respect to
the common ground. The two resistors of 3 Qand 6 Qare connected in series across the 12 V battery.

Hence, drop across 6 Q resistor =12 x 6/(3+6) =8 V.

V, = 8V with respect to the common ground*
Vy, = Vga = Vg -V, =20 -8 = 12 V—with B at a higher potential

» Vi

ol [ ]

23 CD;lzv 6 2
I

10A

%6

L,
|

3

Ry
A B

T A

(@) (b)

Fig. 2.133

(i) Finding R,

Now, we will find Ry, i.e. equivalent resistance of the
network as looked back into the open-circuited terminals A and
B. For this purpose, we will replace both the voltage and current
sources. Since voltage source has no internal resistance, it would
be replaced by a short circuit i.e. zero resistance. However,
current source would be removed and replaced by an ‘open’
i.e. infinite resistance (Art. 1.18). In that case, the circuit
becomes as shown in Fig. 2.133 (c). As seen from Fig. 2.133
(d), Fy, =61 3+2=4Q. Hence, Thevenin’s equivalent circuit
consists of a voltage source of 12 V and a series resistance of 4
Q as shown in Fig. 2.134 (a). When 4 Q resistor is connected
across terminals A and B, as shown in Fig. 2.134 (b).

I =12/(4 +4)=1.5 A—from B to A

(©

@

NS

*  Also, V, = 12 —drop across 3-Qresistor = 12 =12 x 3/(6 + 3) =12-4=8V
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Example 2.63. For the circuit shown in Fig. 2.135 (a), calculate the current in the 10 ohm
resistance. Use Thevenin’s theorem only.

(Elect. Science-I Allahabad Univ. 1992)
Solution. When the 10 Q resistance is removed, the circuit becomes as shown in Fig. 2.135 (b).

w4 Dy || w4
12V 12\}/_T
5 5=
§2 10 %5 V.5 %5 %2
ZOVT T20V J
B Cc B %
(a) (b) (c)

Fig. 2.135

Now, we will find the open-circuit voltage V5 = V,,. For this purpose, we will go from point B
to point A and find the algebraic sum of the voltages met on the way. Y
It should be noted that with terminals A and B open, there is no volt-
age drop on the 8 Q resistance. However the two resistances 0of 5Q ¢ 43
and 2 Q are connected in series across the 20-V battery. As per volt-
age-divider rule, drop on 2 Q resistance =20 x 2/(2 +5) =571V
with the polarity as shown in figure. As per the sign convention of 10V
Art.

10

Vag =V =+571-12=-6.29V

The negative sign shows that point A is negative with respect to
point B or which is the same thing, point B is positive with respect to
point A

For finding R,5 = Ry, we replace the batteries by short-circuits as shown in Fig. 2.128 (c).

Ryg = Rp=8+2]5=943Q

Hence, the equivalent Thevenin’s source with respect to terminals A and B is as shown in Fig.
2.136. When 10 Qresistance is reconnected across A and B, current through it is | = 6.24/(9.43 + 10)
=032 A.

Example 2.64. Using Thevenin’s theorem, calculate the p.d. across terminals A and B in Fig.
2.137 (a).

Solution. (i) FindingV

First step is to remove 7 Q resistor thereby open-circuiting terminals A and B as shown in Fig.
2.137 (b). Obviously, there is no current through the 1 Q resistor and hence no drop across it.
Therefore Vg =V . = V. As seen, current | flows due to the combined action of the two batteries.
Net voltage in the CDFE circuit = 18 —6= 12 V. Total resistance =6 + 3 =9 Q. Hence, | =12/9 =
4/3 A

Fig. 2.136 (a)

Vep = 6V +drop across 3 Qresistor = 6 + (4/3) x 3 =10 V*
Vo = V=10V

(i) Finding R;or R,
As shown in Fig. 2.137 (c), the two batteries have been replaced by short-circuits (SC) since their
internal resistances are zero. As seen, R; =Ry, =1+ 3] 6 =3 The Thevenin’s equivalent circuit is
as shown in Fig. 2.137 (d) where the 7 Q resistance has been reconnected across terminals A and B.

*  Also, V., = 184drop across 6 Qresistor = 18 —(4/3) x 6 =10 V
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The p.d. across this resistor can be found with the help of Voltage Divider Rule (Art. 1.15).

E 6 ¢ 1 , 6 1 ,
T Isc.
be 48C <—Ry,
il

1 B B |l B

(a) (c) (d)

Fig. 2.137
Example 2.65. Use Thevenin’s theorem to find the current in a resistance load connected between
the terminals A and B of the network shown in Fig. 2.138 (a) if the load is (a) 2 Q (b) 1 Q.
(Elect. Technology, Gwalior Univ.)
Solution. For finding open-circuit voltage V. or V,, across terminals Aand B, we must first find

current I, flowing through branch CD. Using Maxwell’s loop current method (Art. 2.11), we have
from Fig. 2.131 (a).

-2, -4(0,-1,)+8 =0 or 31,-21,=4
Also -20,-21,-4-4(0,-1) =0 or 1,-21,=1
From these two equations, we get I, =0.25 A
As we go from point D to C, voltage rise =4 +2x 0.25=45V

Hence, Vo =4.50rV,; =V, =4.5V. Also, it may be noted that point A is positive with respect
to point B.

2 32
%\O?“@L 2 03 2 3 % F
8 v-‘ T4 \Y ‘
F D 3 F D 2 D 3 2
(a) () (c) (d)
Fig. 2.138

In Fig. 2.138 (b), both batteries have been removed. By applying laws of series and parallel
combination of resistances, we get R; = Ry, =5/4 Q = 1.25 Q.

(i) WhenR =2Q; | = 45/(2+1.25)=1.38A

(ii) WhenR =1Q; | =45(1+125)=2.0A

Note. We could also find V. and R; by first Thevenining part of the circuit across terminals E and F and
then across A and B (Ex. 2.62).

Example 2.66. The four arms of a Wheatstone bridge have the following resistances :

AB =100,BC =10,CD =4, DA=50 Q. Agalvanometer of 20 Q resistance is connected across
BD. Use Thevenin’ theorem to compute the current through the galvanometer when a p.d. of 10 V
is maintained across AC. (Elect. Technology, Vikram Univ. of Ujjain)
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Solution. (i) When galvanometer is removed from Fig. 2.139 (a), we get the circuit of
Fig. 2.139 (b).

(i) Let us next find the open-circuit voltage V. (also called Thevenin voltage V) between
points B and D. Remembering that ABC (as well as ADC) is a potential divider on which a voltage
drop of 10 V takes place, we get

Potential of B w.r.t. C 10 x 10/110=10/11=0.909 V
Potential of D w.r.t. C 10 x 4/54=20/27=0.741V
p.d. between B and D is V, or V,, = 0.909 —-0.741 = 0.168 V

(iii) Now, remove the 10-V battery retaining its internal resistance which, in this case, happens to
be zero. Hence, it amounts to short-circuiting points A and C as shown in Fig. 2.139 (d).

B B
100 10 100 10
4 c ¢
e 4 50 4
D
D
E
(c) (d)

Fig. 2.139

(iv) Next, let us find the resistance of the whole network as viewed from points B and D. It may
be easily found by noting that electrically speaking, points A and C have become one as shown in
Fig. 2.140 (a). Itis also seen that BA is in parallel with BC and AD is in parallel with CD. Hence,
Rgp =10 100 +50 || 4=12.79 Q

B 7B °B — o5 ——op
=100 I
100 10 1 212.79 212.79
AXC = 4+c = :12719
203
0 0 P
5 4
J100 g>0.168V g>0.168V
Y 27
D OB oD LoD L— oD
(a) (b) (c) (d)
Fig. 2.140

(v) Now, so far as points B and D are connected, the network has a voltage source of 0.168 V
and internal resistance R; = 12.79 & This Thevenin’s source is shown in Fig. 2.140 (c).
(vi) Finally, let us connect the galvanometer (initially removed) to this Thevenin source and
calculate the current | flowing through it. As seen from Fig. 2.140 (d).
I = 0.168/(12.79 + 20) = 0.005 A =5 mA
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Example 2.67. Determine the current in the 1 Q resistor across AB of network shown in Fig.
2.141 (a) using Thevenin’s theorem. (Network Analysis, Nagpur Univ. 1993)

Solution. The given circuit can be redrawn, as shown in Fig. 2.141 (b) with the 1 Q resistor
removed from terminals A and B. The current source has been converted into its equivalent voltage
source as shown in Fig. 2.141 (c). For finding V,,, we will find the currents x and y in Fig. 2.141 (c).
Applying KVL to the first loop, we get

3-3+2)x-1 =0 or x=04A

o Vi, = Vpg =3-3x04=18V

The value of Ry, can be found from Fig. 2.141 (c) by replacing the two voltage sources by short-
circuits. Inthiscase R, =2[3=1.2Q

x3 42 (xy)

(@

Fig. 2.141

Thevenin’s equivalent circuit is shown in Fig. 2.141 (d). The current through the reconnected
1 Qresistor is = 1.8/(12.1 + 1) = 0.82 A.

Example 2.68. Find the current flowing through the 4 Qresistor in Fig. 2.142 (a) when (i) E =
2 Vand (ii) E =12 V. All resistances are in series.

Solution. When we remove E and 4 Q resistor, the circuit becomes as shown in Fig. 2.142 (b).
For finding Ry, i.e. the circuit resistance as viewed from terminals A and B, the battery has been short-
circuited, as shown. It is seen from Fig. 2.142 (c) that R, =R, =15(|30 + 18 |[9=16 Q

]
15 18
B ISC 4 B 15 18
4 B
30 9 R,
30 9
(b) (©
Fig. 2.142
We will find V,, = V5 with the help L4
of Fig. 2.143 (a) which represents the "
original circuit, except with E and 4 Q 1 16 4
resistor removed. Here, the two circuits 1 40+ v _4p
i 36VT 2
are connected in parallel across the 36 V
battery. The potential of point A equals 30 9 v 6V
the drop on 30 Q resistance, whereas | | B T
potential of point B equals the drop @ ®

across 9 Qresistance. Using the voltage, Fig. 2.143



122 Electrical Technology

divider rule, we have
V, = 30x 30/45=24V
Vg = 36x 9/27=12V
Vag=Va—-Vg=24-12=12V
In Fig. 2.143 (b), the series combination of E and 4 Q resistors has been reconnected across
terminals A and B of the Thevenin’s equivalent circuit.
(i) 1=(12-E)/20=(12-2)/20=0.5 A (ii) | = (12 -12)/20=0
Example 2.69. Calculate the value of V,, and R, between terminals A and B of the circuit
shown in Fig. 2.144 (a). All resistance values are in ohms.

Solution. Forgetting about the terminal B for the time being, there are two parallel paths
between E and F : one consisting of 12 Q and the other of (4 + 8) = 12 Q2 Hence, Rg=121(/12=6
Q.  The source voltage of 48 V drops across two 6 Q resistances connected in series. Hence,
Ve =24 V. The same 24 V acts across 12 Q resistor connected directly between E and F and across
two series —connected resistance of 4 Qand 6 Q connected across E and F.  Drop across 4 Q resistor
=24 x 4/(4 +8) =8V as shown in Fig. 2.144 (c).

D
2 0A D oA 04
g
L. 6 , ., 6 , 6 %4\£
<>48V AW B <>48V E 48V<> 22 B
T2 8 -6 S V) 8
- oC . oC . oC
F F F
(a) (b) (c)
Fig. 2.144
Now, as we go from B to A via point E,
4 B g 4 B

there is a rise in voltage of 8 V followed by £ o MO
another rise in voltage of 24 V thereby
giving a total voltage drop of 32 V. Hence
V,, = 32 V with point A positive. 6 " §8 %4 §8

For finding R,,, we short-circuit the 48
V source. This short circuiting, in effect,
combines the points A, D and F electrically

as shown in Fig. 2.145 (a). Asseenfrom 4 p F e ADF I
Fig. 2.145 (b), (@) (b)
Ry=Vys =8[(4+4)=4Q Fig. 2.145

Example 2.70. Determine Thevenin’s equivalent circuit which may be used to represent the
given network (Fig. 2.146) at the terminals AB.
(Electrical Eng.; Calcutta Univ. )

Solution. The given circuit of Fig. 2.146 (a) would be solved by applying Thevenin’s theorem
twice, first to the circuit to the left of point C and D and then to the left of points A and B. Using this
technique, the network to the left of CD [Fig. 2.146 (a)] can be replaced by a source of voltage V, and
series resistance R;; as shown in Fig. 2.146 (b).

_ 12x6 _ 6x2
Vv, = 6+1+]) =9 volts and R, = 6+2) =15Q

Similarly, the circuit of Fig. 2.146 (b) reduced to that shown in Fig. 2.146 (c)
9 6 6 35

V, = 221

= m 5.68 volts and R,

9.5
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1 1 C 1 A A
—y\V\V\Y Co_/\/\/\ ‘3 T AN o) ,—O

%lel.s R,=2.21

Ty 6= 62 => i 62 => i
V=9V 1,=5.68 V
1 1 I 1
MN oO—A\ 0 AN ‘o)

D B D B D B

(a) (b) (c)

Fig. 2.146

Example 2.71. Use Thevenin’s theorem, to find the value of load resistance R, in the circuit of
Fig. 2.147 (a) which results in the production of maximum power in R . Also, find the value of this
maximum power. All resistances are in ohms.

Solution. We will remove the voltage and current sources as well as R, from terminals A and B
in order to find Ry, as shown in Fig. 2.147 (b).

Ry, = 4+6] 3=6Q
3A

>+
S0

(a) (b)
Fig. 2.147

InFig. 2.147 (a), the current source
has been converted into the equivalent 3 . 4 12V y
voltage source for convenience. Since ——\W—] A
there is no current 4 Q resistance (and T
hence no voltage drop across it), V,,
equals the algebraic sum of battery volt- 24V %6 Vin RLé
age and drop across 6 Q resistor. As
we go along the path BDCA, we get,
V,,=24x 6/(6+3)-12=4V D B
The load resistance has been @ ®)
reconnected to the Thevenin’s
equivalent circuit as shown in Fig. Fig. 2.148
2.148 (b). For maximum power
transfer, R, =R, =6 Q

<

1

Now, vV, = EV‘“ 1

2 22
4 2V P R—LL 5 06eTW
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Example 2.72. Use Thevenin’s theorem to find the current flowing through the 6 Q resis-
tor of the network shown in Fig. 2.149 (a). All resistances are in ohms.

(Network Theory, Nagpur Univ. 1992)

Solution. When 6 Q resistor is removed [Fig. 2.149 (b)], whole of 2 A current flows along

DC producing a drop of (2 x 2) =4 V with the polarity as shown. As we go along BDCA, the
total voltage is

4 4 4
A A AW

) 12V ) 12V ,
IV PRSI ) (YR IRV S 0 R Ny U GRS SN EP)
G o %2 63 CDZA ;%2 7, o:c. %2 =R Ty

y ~
Ohs

o) B ) B D °B S
(a) (b) (©) (d)
Fig. 2.149
= -4+12=8V —with A positive w.r.t. B.
Hence, Ve = V=8V

For finding R; or R, 18 V voltage source is replaced by a short-circuit (Art- 2.15) and the current
source by an open-circuit, as shown in Fig. 2.149 (c). The two 4 Qresistors are in series and are thus
equivalent to an 8 Q resistance. However, this 8 Q resistor is in parallel with a short of 0 Q
Hence, their equivalent value is 0 Q. Now this 0 Q resistance is in series with the 2 Q resistor.
Hence, R; =2+ 0=2 Q. The Thevenin’s equivalent circuit is shown in Fig. 2.149 (d).

| = 8/(2+6)=1Amp —from Ato B

Example 2.73. Find Thevenin’s equivalent circuit for the network shown in Fig. 2.150 (a)
for the terminal pair AB.

Solution. Itshould be carefully noted that after coming to point D, the 6 A current has only one
path to reach its other end C i.e., through 4 Q resistor thereby creating and IR drop of 6 x 4 =24V
with polarity as shown in Fig. 2.150 (b). No part of it can go along DE or DF because it would not
find any path back to point C. Similarly, current due to 18-V battery is restricted to loop EDFE.
Drop across 6 Qresistor = 18 x 6/(6 + 3) = 12 V. For finding V,g, let us start from A and go to B via
the shortest route ADFB. As seen from Fig. 2.150 (b), there is a rise of 24 V from A to D but a fall of

12 V.
6A 6 A (0.C
3 4 3 4 3 4
E__pw—DL 4 E Dy 1C 4 AW &
C +24V -
+
—18V  Ze =18V 12VZ6 6
2 2 2
7 AMA }C} FW % AMA g
(@) () (c)

Fig. 2.150
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from D to F. Hence, V,5 = 24 —12 = 12 V with point A negative w.r.t. ——o4
point B*. Hence, V, = V,g =12V (0r Vg, =12 V).

For finding R, 18 V battery has been replaced by a short-circuit and 6 A §8
current source by an open-circuit, as shown in Fig. 2.150 (c).

As seen, Ry = 4+6]3+2 li2v
=4+2+2=8Q T
Hence, Thevenin’s equivalent circuit for terminals A and B is as shown in . OB
Fig. 2.151. It should be noted that if a load resistor is connected across AB, Fig. 2.151

current through it will flow from B to A.

Example 2.74. The circuit shown in Fig. 2.152 (a) contains two voltage sources and two cur-
rent sources. Calculate (a) Vy, and (b) Ry, between the open terminals A and B of the circuit. All
resistance values are in ohms.

Solution. It should be understood that since terminals A and B are open, 2 A current can flow
only through 4 Qand 10 Qresistors, thus producing a drop of 20 V across the 10 Q resistor, as shown
in Fig. 2.152 (b). Similarly, 3 A current can flow through its own closed circuit between A and C
thereby producing a drop of 24 V across 8 Q resistor as shown in Fig. 2.152 (b). Also, there is no
drop across 2 Q resistor because no current flows through it.

10V 10V
¢ —O0A € [ A
8 2A 8
ANV AW~
a 4 + —24V
10 10220V
2A 5 20V 2A 5 20V
w—= Y oB L A= Y o3
D \_ D
(a) (b)
Fig. 2.152

Starting from point B and going to point A via points D and

oC SC
C, we get —

Vi, =—20+20+24=24V £ }_M
—with point A positive. S

For finding Ry, we will short-circuit the voltage sources and !
open-circuit the current sources, as shown in Fig. 2.153. As seen, %0
Rpy=Rp=8+10+2=20Q 5

Example 2.75. Calculate V,, and Ry, between the open T—D—/W\/v—ogo—olf
terminals A and B of the circuit shown in Fig. 2.154 (a). All
resistance values are in ohms.

Fig. 2.153

Solution. We will convert the 48 V voltage source with its series resistance of 12 Q into a
current source of 4 A, with a parallel resistance of 12 €, as shown in Fig. 2.154 (b).

In Fig. 2.154 (c), the two parallel resistance of 12 Q each have been combined into a single
resistance of 6 € It is obvious that 4 A current flows through the 6 Q resistor, thereby producing a
drop of 6 x 4=24V. Hence, V,, =V, = 24 V with terminal A negative. In other words V,, =24 V.

If we open-circuit the 8 A source and short-circuit the 48-V source in Fig. 2.154 (a), Ry, = Rpg =
12]112=6Q

* Incidentally, had 6 A current been flowing in the opposite direction, polarity of 24 V drop would have been
reversed so that V5 would have equalled (24 + 12) = 36 V with A positive w.r.t. point B.



126 Electrical Technology

oA 0 A

|
4A §|6 - 4A

%12 %12 Q 24V§6 O

%6
+
48V @SA @8A @SA
oB oB A - oB
(c)

(@) (b) =
Fig. 2.154

Example 2.76. Calculate the value of V,, of R, between the open terminals A and B of the
circuit shown in Fig. 2.155 (a). All resistance values are in ohms.

Solution. It is seen from Fig. 2.155 (a) that positive end of the 24 V source has been shown
connected to point A. Itis understood that the negative terminal is connected to the ground terminal G.
Just to make this point clear, the given circuit has been redrawn in Fig. 2.155 (b) as well as in
Fig. 2.155 (c).

Let us start from the positive terminal of the battery and go to its negative terminal G via point C.
We find that between points C and G, there are two parallel paths : one of 6 Q resistance and the

+24 V
A
O
3
3
A G “
L
, ‘%
A S
(@) ®) (©

Fig. 2.155

other of (2 + 4) = 6 Qresistance, giving a combined resistance of 6 || 6 = 3 Q. Hence, total resistance
between positive and negative terminals of the battery = 3 + 3 =6 . Hence, battery current = 24/6
=4 A. Asshown in Fig. 2.155 (c), this current divides equally at point C. Let us go from B to A via
points D and G and total up the potential difference between the two, V, =V, =8V +24V =16 V
with point A positive.

For finding Ry, let us replace the voltage source by a short-circuit, as shown in Fig. 2.156 (a). It
connects one end each of 6 Q resistor and 4 Q resistor directly to point A, as shown in Fig. 2.156 (b).
The resistance of branchDCG =2+6[[3=4Q. Hence Ry, =R,z =4[4=2Q

s T 5
=3 (sc =3 ?6
c——— q C §4
6
&
2 4 B 2 B
ANN i) —0 AN D —0
(a) (b)

Fig. 2.156
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Example 2.77. Calculate the power which would be dissipated in the 8-Q resistor connected
across terminals A and B of Fig. 2.157 (a). All resistance values are in ohms.

Solution. The open-circuit voltage V. (also called Thevenin’s voltage V,,) is that which appears
across terminals A and B. This equals the voltage drop across 10 Q resistor between points C and D.
Let us find this voltage. With AB an open-circuit, 120-V battery voltage acts on the two parallel paths
EF and ECDF. Hence, current through 10 Q resistor is

| = 120/(20+10+20)=2.4A
Drop across 10-Q resistor, V,, = 10x 2.4=24V
Now, let us find Thevenin’s resistance R, i.e. equivalent resistance of the given circuit when

looked into from terminals A and B. For this purpose, 120 V battery is removed. The results in
shorting the 40-Q resistance since internal resistance of the battery is zero as shown in Fig. 2.157 (b).

10 x (20 + 20)

= 164+ ———"—-4+16=40Q
RiorRy = +10+(20+20)+

20 5 4 e | 20 16 4 7
E_ S m—38 | E i€ w4 5 — 4
g | 403R 40
.4 % ] | th
= 40 10 7z 19212 40 10 <= R, 8
“120V§ § & Im}o §I : " av
o
3 | : '[V,h '[24V
AN AN o | AN AN o o -
F 20 D16 B |____Fi2 D i B B B
(a) () (c) (d)
Fig. 2.157

Thevenin’s equivalent circuit is shown in Fig. 2.157 (c). As shown in Fig. 2.157 (d), current
through 8-Q resistor is

| = 24/(40 8) %A P IR % 8 2W

Example 2.78. With the help of Thevenin’s theorem, calculate the current flowing through the
3-Q resistor in the network of Fig. 2.158 (a). All resistances are in ohms.

Solution. The current source has been converted into an equivalent voltage source in Fig. 158 (b).

(i) Finding V. Asseen fromFig.2.158 (c), V,, = Vp. In closed circuit CDFEC, net voltage
=24 -8 =16V and total resistance =8 + 4 + 4 = 16 Q. Hence, current = 16/16 = 1 A.

A 8 6 4
C mwm——s £

=24V Q — 24V —8V — 24V T 8V
2A 4 =3 23 Vo
@ T ] S = S

D
(a) (b) (c)
Fig. 2.158

o
O
& O
~
o
&30
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Drop over the 4-Q resistor in branch

CD =4 x 1=4V with a polarity which is in series E 8 ¢ 6 I 4
addition with 8-V battery. 4

Hence, V,, = V,=Vop=8+4=12V 29

.. .. . 4 4% <= R, 3

(i) Finding R, or R,,. InFig. 2.159 (a), the Z
two batteries have been replaced by short-circuits 12V
because they do not have any internal resistance. oB

Asseen, R, = 6+4(8+4)=9Q r C P

The Thevenin’s equivalent circuit is as shown
in Fig. 2.159 (b). Fig. 2.159
| = 12/(9+3)=1A

Example 2.79. Using Thevenin and Superposition theorems find complete solution for the
network shown in Fig. 2.160 (a).

Solution. First, we will find Ry, across open terminals A and B and then find V,, due to the
voltage sources only and then due to current source only and then using Superposition theorem,
combine the two voltages to get the single V. After that, we will find the Thevenin equivalent.

In Fig. 2.160 (b), the terminals A and E have been open-circuited by removing the 10 V
source and the 1 Qresistance. Similarly, 24 V source has been replaced by a short and current
source has been replaced by an infinite resistance i.e. by open-circuit. Asseen, R,g =Ry, =4]|
4=2Q

A 0A A
%4 1 %4
+ §4 Ry, A 4 =12V
o %4 - % th-1
24V, 24V
2A %4 10V T /
o0— B oB B
D D D
(a) (b) (c)

@)

Fig. 2.160
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We will now find V,, , across AB due to 24 V source only by open-circuiting the current source.
Using the voltage-divider rule in Fig. 2.160 (), we get Vg = Vp = Vi, = 24/2 =12 V.

Taking only the current source and short-circuiting the 24 V source in Fig. 2160 (d), we find that
there is equal division of current at point C between the two 4 Q parallel resistors. Therefore,
Vino=Vag = Vep=1x 4=4V.

Using Superposition theorem, V, =V, _,; + V,, , =12 + 4 = 16 V. Hence, the Thevenin’s
equivalent consists of a 16 V source in series with a 2 Q resistance as shown in Fig. 2.160 (e) where
the branch removed earlier has been connected back across the terminals A and B. The net voltage
around the circuit is =16 —10 = 6 V and total resistance is=2 + 1 =3 Q. Hence, current in the circuit
is=6/3=2A. Also,V,g =V, =16 —-(2x 2) =12 V. Alternatively, V,; equals (2x 1) +10=12 V.

Since we know that V5 =V = 12V, we can find other voltage drops and various circuit currents as
shown in Fig. 2.160 (f). Current delivered by the 24-V source to the node C is (24— Vp)/4 = (24 -12)/
4 =3 A. Since current flowing through branch AB is 2 A, the balance of 1 A flows along CE. As seen,
current flowing through the 4 Q resistor connected across the current source is = (1 +2) =3 A.

Example 2.80. Use Superposition Theorem to find I in the circuit of Fig. 2.161.

[Nagpur Univ. Summer 2001]
B Solution. Atatime, one source acts and the other is

: de-activated, for applying Superposition theorem. If I,
6Q represents the current in 5-ohm resistor due to 20-V
% 0 source, and I, due to 30-V source,
C I =1,+1,
T Due to 20-V source, current into node B
1D :1—30 v = 20/(20 + 5/6) = 0.88 amp
Outofthis, 1, = 0.88x 6/11=0.48 amp
Fig. 2.161. Given Circuit Due to 30-V source, current into node B
=30/(6 + 5/20) = 3 amp
Out of this, I, =3x 20/25=2.4amp
Hence, I =2.88amp

Alternatively, Thevenin’s theorem can be applied at nodes BD after removing 5-ohms resistor
from its position. Following the procedure to evaluate V,, and Ry

Thevenin-voltage, Vo = 27.7 Volts
and Ry = 4.62 Ohms
Current, | = 27.7/(4.62 + 5) = 2.88 amp

2.20. General Instructions for Finding Thevenin Equivalent Circuit

So far, we have considered circuits which consisted of resistors and independent current or voltage
sources only. However, we often come across circuits which contain both independent and dependent
sources or circuits which contain only dependent sources. Procedure for finding the value of V,, and
Ry, in such cases is detailed below :

(@) When Circuit Contains Both Dependent and Independent Sources

(i) The open-circuit voltage V, is determined as usual with the sources activated or “alive’.

(ii) A short-circuit is applied across the terminals a and b and the value of short-circuit
current iy, is found as usual.

(iii) Thevenin resistance Ry, = v, /ig,. Itis the same procedure as adopted for Norton’s theo-

oc s
rem. Solved examples 2.81 to 2.85 illustrate this procedure.
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(b) When Circuit Contains Dependent Sources Only
(i) Inthis case, v, =0
(if) We connect 1 A source to the terminals a and b and calculate the value of v,
(i) Ry, =V, /1Q
The above procedure is illustrated by solved examples.

Example 2.81. Find Thevenin equivalent circuit for the network shown in Fig. 2.162 (a) which
contains a current controlled voltage source (CCVS).
4 20

(@ (©

Fig. 2.162
Solution. For finding V,, available across open-circuit terminals a and b, we will apply KVL to
the closed loop.
12-4ix2i-41i =0 -~ i=2A
Hence, V. = drop across 4 Qresistor =4 x 2 =8 V. It is so because there is no current through
the 2 Q resistor.
For finding Ry,, we will put a short-circuit across terminals a and b and calculate I, as shown in
Fig. 2.162 (b). Using the two mesh currents, we have
12-41i, +2i-4(i, —i,) =0and -8 i, —4 (i, —i;) = 0. Substituting i = (i, —i,) and Simplifying
the above equations, we have
12-4i,+2(,-i,)-4(,-i,)=0 or 3i,-i,=6 (1)
Similarly, from the second equation, we get i, = 3 i,. Hence, i,= 3/4 and Ry, =V, /Iy, = 8/(3/4)
=32/3 Q The Thevenin equivalent circuit is as shown in Fig. 2.162 (c).
Example 2.82. Find the Thevenin equivalent circuit with respect to terminals a and b of the
network shown in Fig. 2.163 (a).

Solution. It will be seen that with terminals a and b open, current through the 8 Q resistor is
v,,/4 and potential of point A is the same that of point a (because there is no current through 4 Q
resistor). Applying KVL to the closed loop of Fig. 2.163 (a), we get

6+(@Bx vyld)-v,, =0 or v, =12V
8 4 4 8 4
— VW M\ 0 q — VWW——F AW——o0a /—o a
+ s + 0.5
Osv B2 OL B

- - 12V

0b —o0 b b

(a) (b) (c)
Fig. 2.163

It is also the value of the open-circuit voltage v,.



DC Network Theorems 131

For finding short-circuit current iy, we short-circuit the terminals a and b as shown in Fig. 2.163
(b). Since with a and b short-circuited, v,, = 0, the dependent current source also becomes zero.
Hence, it is replaced by an open-circuit as shown. Going around the closed loop, we get

12-i,(8+4) =0 or iy,=6/12=05A

Hence, the Thevenin equivalent is as shown in Fig. 2.163 (c).

Example 2.83. Find the Thevenin equivalent circuit for the network shown in Fig. 2.164 (a)
which contains only a dependent source.

Solution. Since circuit contains no independent source, i = 0 when terminals a and b are open.
Hence, v, = 0. Moreover, ig, is zero since v, = 0.

' roc
Consequently, Ry, cannot be found from the relation R, = v, /i,. Hence, as per Art. 2.20, we will

connect a 1 A current source to terminals a and b as shown in Fig. 2.164 (b). Then by finding the
value of v, we will be able to calculate R, = v, /1.

6 6 4
a a

. . a

1 1
& & 1A
? 12 5 12 G) 4.5
ob 4 b
(@) ®)

(c)
Fig. 2.164
It should be noted that potential of point A is the same as that of point a i.e. voltages across 12 Q
resistor is v,,. Applying KCL to point A, we get
2i—vy, v

b - : -
5 1o t1 =0 or 4i-3v,=-12

Since i = v, /12, we have 4 (v, /12) -3 v, =-120rv,, =45V Ry =V, /1 =45/1=45Q

The Thevenin equivalent circuit is shown in Fig. 2.164 (c).

Example 2.84. Determine the Thevenins equivalent circuit as viewed from the open-circuit
terminals a and b of the network shown in Fig. 2.165 (a). All resistances are in ohms.

Solution. It would be seen from Fig. 2.165(a) that potential of node A equals the open-circuit
terminal voltage v .. Also, i = (v, —V,.)/(80 + 20) = (6 —v,)/100.

Applying KCL to node, A we get

6-V,, 9x(6-vy) V,,
+ _—— = =
100 100 10 or V=3V
80 . 20 4 80 . 20 4 &

—"\VW—0— AN\ 3 oa — " W\—Oo— "\ O— a
i + i +
5

VN
6V€>vs 9i(}) 105 e 9i(}) 103 VabCD .

3V
d _ _
o ob 4 — o0 ob
(c)

(a) (®) b
Fig. 2.165
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For finding the Thevenin’s resistance with respect to terminals a and b, we would first “kill” the
independent voltage source as shown in Fig. 2.165 (b). However, the dependent current source
cannot be ‘killed’. Next, we will connect a current source of 1 A at terminals a and b and find the
value of v,. Then, Thevenin’s resistance R, = v,,/1. It will be seen that current flowing away from
node A i.e. from point c to d is = v, /100. Hence, i = —v,/100. Applying KCL to node A, we get

Vab Vab Vab — —
_Vab gl Ya | Vab g -
100 [ 100) 10 0 or vy,=5V

Ry, =5/1=5 Q. Hence, Thevenin’s equivalent source is as shown in Fig. 2.165 (c).

Example 2.85. Find the Thevenin’s equivalent circuit with respect to terminals a and b of the
network shown in Fig. 2.166 (a). All resistances are in ohms.

Solution. It should be noted that with terminals a and b open, potential of node A equals v,
Moreover, v =v,.. Applying KCL to node A, we get

—5—Vﬂ+i{(‘i’+1soj_vab} =0 or V, =75V

15 10 3
150 V
TN VIS S SN a
N . N . l, $75/2
I THOR )5 g w®
75V
. ] .
o) o ot
(@) (b) b (©)

Fig. 2.166

For finding R, we will connect a current source of iA* across terminals a and b. It should be
particularly noted that in this case the potential of node A equals (v,,—30i). Also, v = (v,, -301i) =
potential of node A, Applying KCL to node A, we get from Fig. 2.166 (b).

o (v —300) 1 |(vy —30i .
i= ab15 +E ab3 _(Vab_30|) =0
4v, =150iorv,/i=752Q. Hence Ry =Vv,/i =75/2 Q The Thevenin’s equivalent
circuit is shown in Fig. 2.166 (c).

2.21. Reciprocity Theorem

It can be stated in the following manner :

In any linear bilateral network, if a source of e.m.f. E in any branch produces a current I in
any other branch, then the same e.m.f. E acting in the second branch would produce the same
current | in the first branch.

In other words, it simply means that E and | are mutually transferrable. The ratio E/I is known as
the transfer resistance (or impedance in a.c. systems). Another way of stating the above is that the
receiving point and the sending point in a network are interchangebale. It also means that interchange
of an ideal voltage sources and an ideal ammeter in any network will not change the ammeter reading.
Same is the case with the interchange of an ideal current source and an ideal voltmeter.

*  We could also connect a source of 1 A as done in Ex. 2.83.
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Example 2.86. In the netwrok of Fig. 2.167 (a), find (a) ammeter current when battery is at A
and ammeter at B and (b) when battery is at B and ammeter at point A. Values of various resistances
are as shown in diagram. Also, calculate the transfer resistance.

Solution. (a) Equivalent resistance between points C and B in Fig. 2.167 (a) is
= 12x4/16=3Q

S 2 - 3
Total circuit reistance
=2+3+4=9Q |, !
Battery current = 36/9=4A AT 36V 1
Ammeter current i §12
= 4x12/16=3 A. 24
(b) Equivalent resistance between points C | B
and D in Fig. 2.167 (b) is -
= 12x6/18=4Q
Total circuit resistance= 4+3+1=8Q Fig. 2167
Battery current = 36/8=45A

Ammeter current = 4.5 x 12/18=3 A
Hence, ammeter current in both cases is the same.
Transfer resistance = 36/3=12 Q

Example 2.87. Calculate the currents in the various branches of the network shown in Fig.
2.168 and then utilize the principle of Superposition and Reciprocity theorem together to find the
value of the current in the 1-volt battery circuit when an e.m.f. of 2 votls is added in branch BD
opposing the flow of original current in that branch.

Solution. Letthe currents in the various branches be as shown in the figure. Applying Kirchhoff’s
second law, we have

For loop ABDA ; =21, -8l +6l,=0 or I, -3l,+4l;=0 ()]
For loop BCDB, -4 (I, -1;) +5 (I, + 1) +8l;=0 or 4l, -51,-171;=0 ..(ii)
For loop ABCEA, -2I, —4(l, —15) =10(I, + I,)) + 1 =0 or 16l + 101, -4l;=1 (i)

Solving for 1, I, and I, we get I, = 0.494 A; I, =0.0229 A; 1,=0.0049 A

Fig. 2.168 Fig. 2.169
Current in the 1 volt battery circuitis I, + 1, = 0.0723 A.

The new circuit having 2 - V battery connected in the branch BD is shown in Fig. 2.169. According
to the Principle of Superposition, the new current in the 1- volt battery circuit is due to the superposition
of two currents; one due to 1 - volt battery and the other due to the 2 - volt battery when each acts
independently.

The current in the external circuit due to 1 - volt battery when 2 - volt battery is not there, as
found above, is 0.0723 A.
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Now, according to Reciprocity theorem; if 1 - volt battery were tansferred to the branch BD
(where it produced a current of 0.0049 A), then it would produce a current of 0.0049 A in the branch
CEA (where it was before). Hence, a battery of 2 - VV would produce a current of (-2 x 0.0049) = —
0.0098 A (by proportion). The negative sign is used because the 2 - volt battery has been so con-
nected as to oppose the current in branch BD,

new current in branch CEA = 0.0723 —0.0098 = 0.0625 A

Tutorial Problems No. 2.5

1. Calculate the current in the 8-W resistor of Fig. 2.170 by using Thevenin’s theorem. What will be its
value of connections of 6-V battery are reversed ? [0.8A;0A]

2. Use Thevenin’s theorem to calculate the p.d. across terminals A and B in Fig. 2.171. [1.5V]

2 S A

||: AMMN—O

4
] —12V 3
3 5 10§ 102 10
6V :
O
B

N

'FV

4.5
5
AMN—©O
B

>

Fig. 2.170 Fig. 2.171 Fig. 2.172
3. Compute the current flowing through the load resistance of 10 Q connected across terminals A and B
in Fig. 2.172 by using Thevenin’s theorem.
4. Find the equivalent Thevenin voltage and equivalent Thevenin resistance respectively as seen from
open-circuited terminals A and B to the circuits shown in Fig. 2.173. All resistances are in ohms.

AN 04 AW Y| AN —04
4 4 4
3 6
%6 §3 L
12V 36V
— 0B oB —oB
(a) (c)
O
10 24V
"
I 60
<>24 \% 4 30 L,
10 36V
= 10
| <) AV oB
(d) (0]

Fig. 2.173
[@Q)8V, 6K (b) 120V, 6% (c) 12V, 6 & (d) 12V, 20 & (e) —40 V, 5 (f) —12 V, 30 Q)
5. Find Thevenin’s equivalent of the circuits shown in Fig. 2.174 between terminals A and B.

R R, R, R R, VR, +V,R . RR,
a = = =
(@) Vi =1 R Y Re R, R TR R, @ VT R AR, RN TR R,

(©) Vi, = —IR; Ry, = R, (d) Vy, = -V, —IR, Ry, = R (&) Not possible]
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oA oA
R, R Ry
C* 1 §RI + + +
v 14 2
- oB _ . oB
(a) (b)
14
: 1
S rE I 2 1O,
4
Bo Bo
(c) (d) (e)
Fig. 2.174

AB

The four arms of a Wheatstone bridge have the following resistances in ohms.
100, BC =10,CD =5, DA=60

A galvanometer of 15 ohm resistance is connected across BD. Calculate the current through the
galvanometer when a potential difference of 10 V is maintained across AC.

[Elect. Engg. A.M.Ae. S.I.Dec. 1991] [4.88 mA]

Find the Thevenin equivalent circuit for the network shown in Fig. 2.175.

[@)4V;8Q(b)6V;3Q(c)0V;2/5

3 4
WOy WOy S
2i 1 2i 2Vab
i +
<>6V 2§ ()12\/ é §6 z§
b b b
O O o]
(a) () )
Fig. 2.175

8.
4, 3
A —A AN —
—1o0v =y
4
—)
Fig. 2.176

Use Thevenin’s theorem to find current in the branch AB of the network shown in Fig. 2.176.

[1.84 A]

T2V

Fig. 2.177
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10.

In the network shown in Fig. 2.177 find the current that would flow if a 2-Q resistor was connected
between points A and B by using.

(a) Thevenin’s theorem and (b) Superposition theorem. The two batteries have negligible resistance.
[0.82 A]

State and explain Thevenin’s theorem. By applying Thevenin’s theorem or otherewise, find the cur-
rent through the resistance R and the voltage across it when connected as shown in Fig. 2.178.

[60.49 A, 600.49 V] (Elect. and Mech. Technology, Osmania Univ.)

s, 3 10 20 15
AN AN AN AW\ AN -O=—
5 15
4 R=10 % 4
T30V 10 T50V RE
2
30
B =
Fig. 2.178 Fig. 2.179

11. State and explain Thevenin’s theorem.
For the circuit shown in Fig. 2.179, determine the current through R, when its value is 50 Q Find the
value of R,_for which the power drawn from the source is maximum.
(Elect. Technology I, Gwalior Univ.)
12. Find the Thevenin’s equivalent circuit for terminal pair AB for the network shown in Fig. 2.180.
Vi, ==16 V and Ry, = 16 &
4A
15 6 4 2 5 2 1 4
A — AW |—’\N\, AN 0
=20V 10 Tiov 24 RZ Ty 26 26
[ 4 1 1
AW o) A\ 0
B B
Fig. 2.180 Fig. 2.181 Fig. 2.182
13. For the circuit shown in Fig. 2.181, determine current through R, when it takes values of 5 and 10 Q
[0.588 A, 0.408 A] (Network Theorem and Fields, Madras Univ.)
14. Determine Thevenin’s equivalent circuit which may be used to represent the network of Fig. 2.182 at
the terminals AB. Vi, =48V,R;, =249
15. For the circuit shown in Fig. 2.183 find Thevenin’s equivalent circuit for terminal pair AB.
[6V,6¢
4 6 y 6

AW

2
2 o
__1__6V 3§ 45V ?3

Ilz %
AN
6
Fig. 2.183 Fig. 2.184

o)
)
Q
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16. ABCD is a rectangle whose opposite side AB and DC represent resistances of 6 Qeach, while AD and
BC represent 3 Qeach. A battery of e.m.f. 4.5 V and negligible resistances is connected between
diagonal points A and C and a 2 - Qresistance between B and D. Find the magnitude and direction of
the current in the 2-ohm resistor by using Thevenin’s theorem. The positive terminal is connected to
A. (Fig. 2.184) [0.25 A from D to B] (Basic Electricity Bombay Univ.)

2.22. Delta/Star* Transformation

In solving networks (having considerable number of branches) by the application of Kirchhoff’s
Laws, one sometimes experiences great difficulty due to a large number of simultaneous equations
that have to be solved. However, such complicated network can be simplified by successively replacing
delta meshes by equivalent star system and vice versa.

Suppose we are given three resistances R;,, R,; and R, connected in delta fashion between
terminals 1, 2 and 3 as in Fig. 2.185 (a). So far as the respective terminals are concerned, these three
given resistances can be replaced by the three resistances R;, R, and R, connected in star as shown in
Fig. 2.185 (b).

These two arrangements will be electrically equivalent if the resistance as measured between any
pair of terminals is the same in both the arrangements. Let us find this condition.

R3 1 Rl 2
R,
3 AN N 3
@ )

Fig. 2.185

First, take delta connection : Between terminals 1 and 2, there are two parallel paths; one having
a resistance of R, and the other having a resistance of (R, + R;,).

_ R X(Rys +Ry))

Rz + (Ry + Ryy)
Now, take star connection : The resistance between the same terminals 1 and 2 is (R, + R,).
As terminal resistances have to be the same

R +R, = 12X Bt Ry) =0

Rip + Ros + Ry
Similarly, for terminals 2 and 3 and terminals 3 and 1, we get

Ry X (Rgy + Ryp)

Resistance between terminals 1 and 2 is

RotRs = Ry, + Rys + Ry -
_ Ry X(Ry +Ry)
and R;+R; = R, + Rys + Ry, (1))
Now, subtracting (ii) from (i) and adding the result to (iii), we get
_ RoRy . R. = Rys Rip and R, = Ra1 Ros

"Ry +Ry+Ry ' 2 Ry +Ry+Ry Rip + Rys + Ry

*  In Electronics, star and delta circuits are generally referred to as T and m circuits respectively.
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How to Remember ?

It is seen from above that each numerator is the product of the two sides of the delta which meet
at the point in star. Hence, it should be remembered that : resistance of each arm of the star is given
by the product of the resistances of the two delta sides that meet at its end divided by the sum of the
three delta resistances.

2.23. Star/Delta Transformation
This tarnsformation can be easily done by using equations (i), (ii) and (iii) given above. Multi-
plying (i) and (ii), (ii) and (iii), (iii) and (i) and adding them together and then simplifying them, we
get
R+ R,R, + R R
R12: R12 2R3 3R1:R1+R2+R§2
3 3
R+ R,R, + R R,R
Ry; = RiRy* RofRy 3R1=R2+R3+—23

RiRyt+ RoRs + ReRy R + R, + RsRy
R, R,

How to Remember ?

The equivalent delta resistance between any two terminals is given by the sum of star resistances
between those terminals plus the product of these two star resistances divide by the third star
resistances.

Example 2.88. Find the input resistance of the circuit between the points A and B of Fig 2.186(a).

(AMIE Sec. B Network Analysis Summer 1992)

Solution. For finding R,;, we will convert the delta CDE of Fig. 2.186 (a) into its equivalent star

as shown in Fig. 2.186 (b).
Res = 8 x 4/18 = 16/9 € Rgg, = 8 x 6/18 = 24/9 Q Ry = 6 x 4/18 = 12/9 Q
The two parallel resistances between S and B can be reduced to a single resistance of 35/9 Q

4
A C

4

6

D

8
B
o

(a) ) (c)

Fig 2.186
As seen from Fig. 2.186 (c), Ryg = 4 + (16/9) + (35/9) = 87/9 Q

Example 2.89. Calculate the equivalent resistance between the terminals A and B in the net-
work shown in Fig. 2.187 (a). (F.Y. Engg. Pune Univ.)

Solution. The given circuit can be redrawn as shown in Fig. 2.187 (b). When the delta BCD is
converted to its equivalent star, the circuit becomes as shown in Fig. 2.187 (c).

Each arm of the delta has a resistance of 10 & Hence, each arm of the equivalent star has a
resistance = 10 x 10/30 = 10/3 Q2 As seen, there are two parallel paths between points A and N, each
having a resistance of (10 + 10/3) = 40/3 Q. Their combined resistance is 20/3 . Hence,
Rag = (20/3) +10/3 =10 Q
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10

A o A
10 10 10 10 10 10

4 LS i w3 4 ¢ p 4 Mhl D
%lo 0 103" Mo

10 %10/3

B
(@) (b) () B
Fig. 2.187

Example 2.90. Calculate the current flowing through the 10 € resistor of Fig. 2.188 (a) by
using any method. (Network Theory, Nagpur Univ. 1993)

Solution. It will be seen that there are two deltas in the circuit i.e. ABC and DEF. They have
been converted into their equivalent stars as shown in Fig. 2.188 (b). Each arm of the delta ABC has
a resistance of 12 Qand each arm of the equivalent star has a resistance of 4 Q. Similarly, each arm
of the delta DEF has a resistance of 30 Q2and the equivalent star has a resistance of 10 Qper arm.

The total circuit resistance between Aand F=4 +48 || 24 + 10 =30 Q Hence | =180/30 =6 A.

Current through 10 Qresistor as given by current-divider rule = 6 x 48/(48 + 24) = 4 A.

) Iy
180 v 6A gov r
F
17 10§
4 4 34 10 9p
A
B D
3(@13 24 loj
E 10
4A
Lo .
()
Fig. 2.188

Example 2.91. Abridge network ABCD has arms AB, BC, CD and DA of resistances 1, 1, 2 and

1 ohm respectively. If the detector AC has a resistance of 1 ohm, determine by star/delta
transformation, the network resistance as viewed from the battery terminals.

(Basic Electricity, Bombay Univ.)

4
1Q 10
D %1 Q >
2Q 10
c
|t
(@ (b) (© @

Fig. 2.189
Solution. As shown in Fig. 2.189 (b), delta DAC has been reduced to its equivalent star.

2x1 1 2
= =05Q, R,=>=025Q, R.=%£=05Q
D= Zi1e1 00 A= =02 c=4=0°




140

Electrical Technology

Hence, the original network of Fig. 2.189 (a) is reduced to the one shown in Fig. 2.189 (d). As

seen, there are two parallel paths between points N and B, one of resistance 1.25 Q and the other of
resistance 1.5 € Their combined resistance is

_ 125x15 15
125+15 22

Total resistance of the network between points D and B is

05 B Bg

22 11
Example 2.92. A network of resistances is formed as follows as in Fig. 2.190 (a)

AB=9Q; BC=1Q CA=15Qforming adeltaand AD =6 Q;BD =4 Qand CD=3Q
forming a star. Compute the network resistance measured between (i) A and B (ii) B and C and
(iif) C and A.

(Basic Electricity, Bombay Univ. 1980)
4 4
27
9 15Q 6Q T
D
4Q 30
B e c B 9 o c
1Q 5
(@) ()

Fig. 2.190

Solution. The star of Fig. 2.190 (a) may be converted into the equivalent delta and combined in

parallel with the given delta ABC. Using the rule given in Art. 2.22, the three equivalent delta
resistance of the given star become as shown in Fig. 2.190 (b).

When combined together, the final circuit is as shown in Fig. 2.190 (c).
(i) As seen, there are two parallel paths across points A and B.

(a) one directly from A to B having a resistance of 6 Qand

(b) the other via C having a total resistance

27 9

27 6 2.25 18
= 20 10 2% Re 6 225 119
6 % 4m % 6 4 e
(i) Rge = 26 2 ﬁﬂ (i) Rea 26 2 ﬁﬂ

Example 2.93. State Norton’s theorem and find current using Norton’s theorem through a load
of 8 Qin the circuit shown in Fig. 2.191(a).(Circuit and Field Theory, A.M.L.E. Sec. B, 1993)

Solution. In Fig. 2.191 (b), load impedance has replaced by a short-circuit.
lsc = Iy =200/2 =100 A.

2
AW,

6 6 6 6

20 % % 20

1200V %4 8 7200 V o4 B Iy

10 10 10 10

C

(a) ()

Fig. 2.191
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Norton’s resistance Ry, can be found by looking into the open terminals of Fig. 2.191 (a). For this
purpose A ABC has been replaced by its equivalent Star. As seen, Ry, is equal to 8/7 Q

Hence, Norton’s equivalent circuit consists of a 100 A source having a parallel resistance of
8/7Q as shown in Fig. 2.192 (c). The load current I_can be found by using the Current Divider rule.
8/7)

= 100x———+—=125A
L 8+(8/7)
0A4
1
95 100A
%4 (*D gRN 8§
2.5 Iy
— 0B
(b) (©
Fig. 2.192
Example 2.94. Use delta-star conversion to find resistance between terminals ‘AB’ of the cir-
cuit shown in Fig. 2.193 (a). All resistances are in ohms. [Nagpur University April 1999]
AW )
A e 40
2Q
Q 2’4
: Pl W
D 2Q
Fig. 2.193 (a)

Solution. First apply delta-star conversion to CGD and EDF, so as to redraw the part of the
circuit with new configuration, as in Fig. 2.193 (b).

A 50 C 2Q E Ao E
50
08Q
: ’ H J

Fig. 2.193 (b) Fig. 2.193 (c)
A C C

Fig. 2.193 (d) Fig. 2.193 (e)

Simplify to reduce the circuit to its equivalents as in Fig. 2.193 (c) and later as in Fig. 2.193 (d).
Convert CHJ to its equivalent star as in Fig. 2.193 (e). With the help of series-parallel combinations,
calculate R,y as



142 Electrical Technology

Rag =5.33 +(1.176 x 4.12/5.296) = 6.245 ohms A C 28Q
Note : Alternatively, after simplification as in Fig. (d). “CDJ 5Q

— H” star-configuration can be transformed into delta. Node H

then will not exist. The circuit has the parameters as shown in

Fig. 2.193 (f). Now the resistance between C and J (and also J
between D and J) is a parallel combination of 7.2 and 2.8 ohms,

which 2.016 ohms. Along CJD, the resistance between terminals

AB then obtained as :

Bo

Rae = 5.0+ (1.8 x4.032/5.832) D 280
= 5.0 + 1.244 = 6.244 ohms Fig. 2.193 ()
Example 2.94 (a). Find the resistance at the A-B terminals in the electric circuit of Fig. 2.193
(9) using A-Y transformation. [U.P. Technical University, 2001]
C
Ao
Bo

Fig. 2.193 (g)

Solution. Convert delta to star for nodes C, E, F. New node N is created. Using the formulae
for this conversion, the resistances are evaluated as marked in Fig. 2.193 (h). After handling series
parallel combinations for further simplifications.

Rag = 36 ohms.

Ao ©

(=)}

A
10 15 WWAWV T

E< F o 20Q
=180V %609 (Load)

E :
T |

Fig. 2.193 (h) Fig. 2.193 (i)
Example 2.94 (b). Consider the electric circuit shown in Fig. 2.193 (i)

Determine : (i) the value of R so that load of 20 ohm should draw the maximum power, (ii) the

value of the maximum power drawn by the load. [U.P. Technical University, 2001]

Solution. Maximum power transfer takes place when load resistance = Thevenin’s Resistance
=20 ohms, here

R/60

VTH

Current through load

Maximum Power Load

20 ohms, giving R = 30 ohms
180 x (60/90) = 120 volts
120/40 = 3 amps

180 watts
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Tutorial Problems No. 2.6

Delta/Star Conversion

1. Find the current in the 17 Q resistor in the network shown in Fig. 2.194 (a) by using (a) star/delta
conversion and (b) Thevenin’s theorem. The numbers indicate the resistance of each member in

ohms. [10/3A]
2. Convert the star circuit of Fig. 2.194 (b) into its equivalent delta circuit. Values shown are in ohms.
Derive the formula used. (Elect. Technologyhlndor Univ.)

4 41 15

AW 5
|
2 6 15 j 3
10
i = s )

Ae—NMW

6 17 11 ‘ 2% |
115 Vo o o) |
(e}

B

6
o—MWW——F—AMWW——o A

Fig. 2.194 (a) Fig. 2.194 (b) Fig. 2.195
3. Determine the resistance between points A and B in the network of Fig. 2.195.
[4.23 Q] (Elect. Technology, Indor Univ.)

4. Three resistances of 20 Qeach are connected in star. Find the equivalent delta resistance. If the source
of eem.f. of 120 V is connected across any two terminals of the equivalent delta-connected resistances,

find the current supplied by the source. [60  3A] (Elect. Engg. Calcutta Univ.)
B
20 10
A C?D 5 ©
30 5
D
8V
(!
Fig. 2.196 Fig. 2.197
5. Using delta/star transformation determine the current through the galvanometer in the Wheatstone bridge
of Fig. 2.196. [0.025 A]
6. With the aid of the delta star transformation reduce the network given in Fig. 2.197 (a) to the equivalent
circuit shown at (b) [R=538
7. Find the equivalent resistance between points A and B of the circuit shown in Fig. 2.198. [1.4 R]

8. By firstusing a delta-star transformation on the mesh ABCD of the circuit shown in Fig. 2.199, prove that

the current supplied by the battery is 90/83 A.
40 20
2R

-
\ 10 E 30_
R R R 5
I J—— W]
pr 30V

Fig. 2.198 Fig. 2.199
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2.24. Compensation Theorem

This theorem is particularly useful for the following two purposes :

(a) For analysing those networks where the values of the branch elements are varied and for

studying the effect of tolerance on such values.

(b) For calculating the sensitivity of bridge network.

As applied to d.c. circuits, it may be stated in the following for ways :

(1) Inits simplest form, this theorem asserts that any resistance R in a branch of a network in
which a current I is flowing can be replaced, for the purposes of calculations, by a voltage
equal to— IR.

OR
(ii) If the resistance of any branch of network is changed from R to (R + AR) where the
current flowing originally is I, the change of current at any other place in the network
may be calculated by assuming that an e.m.f. — I. AR has been injected into the modified
branch while all other sources have their e.m.f.s. suppressed and are represented by their
internal resistances only.

Example 2.95. Calculate the values of new currents in the network illustrated in Fig. 2.200
when the resistor R, is increased (in place of s) by 30 %.

Solution. In the given circuit, the values of h=35A
various branch cur_rents are . R=5Q

lp = 75/(5+10)=5A L=25A  yL=23A
I, = I,=25A

Now, value of =75V R,=20 Q R, =20Q
R, = 20+ (0.3x 20) = 26 Q T

AR =6 Q
V = —|3 AR - -
= -25x6==15V Fig. 2.200

The compensating currents produced by this voltage are as shown in Fig. 2.201 (a).

When these currents are added to the original currents in their respective branches the new cur-
rent distribution becomes as shown in Fig. 2.201 (b)

0.4A 0.5A 4.6A
e WA

5Q 5Q

0.1A 5 ) 2.6A 2A

20 Q =75V 200 26 Q

[ 15V
(a) (b)
Fig. 2.201

2.25. Norton’s Theorem

This theorem is an alternative to the Thevenin’s theorem. In fact, it is the dual of Thevenin’s
theorem. Whereas Thevenin’s theorem reduces a two-terminal active network of linear resistances
and generators to an equivalent constant-voltage source and series resistance, Norton’s theorem replaces
the network by an equivalent constant-current source and a parallel resistance.
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This theorem may be stated as follows :

(i) Any two-terminal active network containing voltage sources and resistance when viewed
from its output terminals , is equivalent to a constant-current source and a parallel resistance.
The constant current is equal to the current which would flow in a short-circuit placed across the
terminals and parallel resistance is the resistance of the network when viewed from these open-
circuited terminals after all voltage and current sources have been removed and replaced by their
internal resistances.

Constant Current
Source

R, R
————O —AWA
A A \ A
; O
Network Network E E,
<—R Isc %Ri 5=0 Ry r=0

E
Q
—
(with sources) Isc | S (no sources) i
=
(=}
=
7 —oO
B B / 5 [ I
Internal B
Resistance Infinite
(a) () (©) (d)
Fig. 2.202

Explanation

As seen from Fig. 2.202 (a), a short is placed across the terminals A and B of the network with all
its energy sources present. The short-circuit current I gives the value of constant-current source.

For finding R;, all sources have been removed as shown in Fig. 2.202 (b). The resistance of the
network when looked into from terminals A and B gives R;.

The Norton’s* equivalent circuit is shown in Fig. 2.202 (c). It consists of an ideal constant-
current source of infinite internal resistance (Art. 2.16) having a resistance of R; connected in parallel
with it. Solved Examples 2.96, 2.97 and 2.98 etc. illustrate this procedure.

(ii) Another useful generalized form of this theorem is as follows :

The voltage between any two points in a network is equal to I, R; where I is the short-
circuit current between the two points and R; is the resistance of the network as viewed from these
points with all voltage sources being replaced by their internal resistances (if any) and current
sources replaced by open-circuits.

Suppose, it is required to find the voltage across resistance R, and hence current through it [Fig.
2.202 (d)]. If short-circuit is placed between A and B, then current in it due to battery of e.m.f. E is
E,/R; and due to the other battery is E,/R,.

E,L E
sc = §1+R_z= E, G+ EG,
where G, and G, are branch conductances.

Now, the internal resistance of the network as viewed from A and B simply consists of three
resistances R,, R, and R, connected in parallel between A and B. Please note that here load resistance
R, has not been removed. In the first method given above, it has to be removed.

1. i+i+i:G1+G2 + G,
Ri R R R
o —21 VTR
Ri = G,+G,+G, = Vas = lseRi = G 16,46,
Current through R, is 1, = V,g/R,.
Solved example No. 2.96 illustrates this approach.

*  After E.L. Norton, formerely an engineer at Bell Telephone Laboratory, U.S.A.
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2.26. How To Nortonize a Given Circuit ?

This procedure is based on the first statement of the theorem given above.

1. Remove the resistance (if any) across the two given terminals and put a short-circuit across
them.

2. Compute the short-circuit current Ig..

3. Remove all voltage sources but retain their internal resistances, if any. Similarly, remove all
current sources and replace them by open-circuits i.e. by infinite resistance.

4. Next, find the resistance R, (also called Ry of the network as looked into from the given
terminals. It is exactly the same as R, (Art. 2.16).

5. The current source (I.) joined in parallel across R; between the two terminals gives Norton’s
equivalent circuit.

As an example of the above procedure, please refer to Solved Example No. 2.87, 88, 90 and 91
given below.

Example 2.96. Determine the Thevenin and Norton equivalent circuits between terminals A
and B for the voltage divider circuit of Fig. 2.203 (a).

Solution. () Thevenin Equivalent Circuit

. R
Obviosuly, V,, = drop across R, = E 2
y th p 2 Rl + R2
When battery is replaced by a short-circuit.

R 4

AN 0
RilI R,

—E Rz% A g &, (D]% %RHIR2

[ ~ / RtR,

o
Ol

O O QO
B B B
(@ () ©
Fig. 2.203
R, = Ry|IR,=R,RJ(R, +R,)

Hence, Thevenin equivalent circuit is as shown in Fig. 2.203 (b).

(b) Norton Equivalent Circuit

A short placed across terminals A and B will short out R, as well. Hence, I =E/R;. The Norton
equivalent resistance is exactly the same as Thevenin resistance except that it is connected in parallel
with the current source as shown in Fig. 2.203 (c)

Example 2.97. Using Norton’s theorem, find the constant-current equivalent of the circuit shown
in Fig. 2.204 (a).

Solution. When terminals A and B are short-circuited as shown in Fig. 2.204 (b), total resistance
of the circuit, as seen by the battery, consists of a 10 Qresistance in series with a parallel combination
of 10 Qand 15 Q resistances.

15x10

total resistance =10+ —-—— =16 Q
15410

battery current 1=100/16 =6.25 A
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100 150 7 100 15Q
¢ AW 0A MM o AMAN A4 04
25A
100 V
o S0 =0 S0 l @T $200
Isc
oB - B oB
D
(@) (b) (©
Fig. 2.204

This current is divided into two parts at point C of Fig. 2.204 (b).

Current through AB is I = 6.25x 10/25=25A

Since the battery has no internal resistance, the input resistance of the network when viewed
from A and B consists of a 15 Qresistance in series with the parallel combination of 10 Qand 10 Q
Hence, R; = 15 + (10/2) = 20 Q

Hence, the equivalent constant-current source is as shown in Fig. 2.204 (c).

Example 2.98. Apply Norton’s theorem to calculate current flowing through 5 — Q resistor of
Fig. 2.05 (a).

Solution. (i) Remove 5 — Q resistor and put a short across terminals A and B as shown in
Fig. 2.205 (b). As seen, 10 —Q resistor also becomes short-circuited.

(i) Letusnow find I.. The battery sees a parallel combination of 4 Qand 8 Qin series with a
4 Qresistance. Total resistance seen by the battery =4 + 4 || 8 = 20/3 @ Hence, | = 20 + 20/3 =
3 A. This current divides at point C of Fig. 2.205 (b). Current going along path CAB gives lg.. Its
value=3x 4/12=1A.

rov 42 2 rov 24 102 lISC
B

(a) )

MA oA — oA A

é 1% <R 2 10% <R, (D 5% 5

1A
oB L oB B

(© (@) (e)

Fig. 2.205
(iii) In Fig. 2.205 (c), battery has been removed leaving behind its internal resistance which, in
this case, is zero.
Resistance of the network looking into the terminals A and B in Fig. 2.205 (d) is
R =10(10=5Q
(iv) Hence, Fig. 2.205 (e), gives the Norton’s equivalent circuit.
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(v) Now, join the 5 —Q resistance back across terminals A and B. The current flowing through
it, obviously, is I,5=1x 5/10=0.5 A.

Example 2.99. Find the voltage across points A and B in the network shown in Fig. 2.206 (a) by
using Norton’s theorem.

Solution. The voltage between points Aand Bis V,; = I R;

where Isc = short-circuit current between A and B
R; = Internal resistance of the network as viewed from points A and B.
When short-circuit is placed between A and B, the current flowing in it due to 50-V battery is
= 50/50=1A —fromAtoB
Current due to 100 V battery is = 100/20=5 A —fromBto A
liec =1-5=-4A —fromBtoA
50 Q r————77,50Q
A 0 : —\W\ 0
|
o |
N 20 Q | ! P
i |l gl | c G
. Y | 210 @ iE 23 | §g 2
T100 A% : : L
| ’
o | o
S "I\ Zero Resistance
Fig. 2.206 (a) Fig. 2.206 (b)

Now, suppose that the two batteries are removed so that the circuit becomes as shown in Fig.
2.206 (b). The resistance of the network as viewed from points A and B consists of three resistances
of 10 , 20 Qand 50 Q ohm connected in parallel (as per second statement of Norton’s theorem).

1 - 1,1,1. henceRlz%Q

R 102050
Vg = — 4% 100/17 == 235V

The negative sign merely indicates that point B is at a higher potential with respect to the point A.

Example 2.100. Using Norton’s theorem, calculate the current flowing through the 15 Qload
resistor in the circuit of Fig. 2.207 (a). All resistance values are in ohm.

Solution. (a) Short-Circuit Current I

As shown in Fig. 2.207 (b), terminals A and B have been shorted after removing 15 Qresistor.
We will use Superposition theorem to find 1.
(i) When Only Current Source is Present

In this case, 30-V battery is replaced by a short-circuit. The 4 A current divides at point D
between parallel combination of 4 Qand 6 . Current through 6 Qresistor is

Il = 4x4/(4+6)=16A —fromBto A
(i) When Only Battery is Present
In this case, current source is replaced by an open-circuit so that no current flows in the branch
CD. The current supplied by the battery constitutes the short-circuit current
g I = 30/(4+6)=3A —fromAtoB
I, = I —1 =3-16=14A —fromAtoB

sC
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4 6 A 6 A 6 A
— W= awn—5 C mpn—25 %MLMM—o o
IL
8 8
i RL i
T30V 152 T30V 1 sC <= R, (D 10% 15
4A 4A sc 0.C. 1.4A
O —0 T O
D B D B D B B
(a) (b) (c) (d)
Fig. 2.207

(b) Norton’s Parallel Resistance
As seen from Fig. 2.207 (c) R; =4 + 6 = 10 Q The 8 Qresistance does not come into the picture
because of an open in the branch CD.
Fig. 2.207 (d) shows the Norton’s equivalent circuit along with the load resistor.
I, = 1.4x 10(10+15)=0.56 A

Example 2.101. Using Norton’s current-source equivalent circuit of the network shown in
Fig. 2.208 (a), find the current that would flow through the resistor R, when it takes the values of 12,
24 and 36 Q respectivley. [Elect. Circuits, South Gujarat Univ.]

Solution. InFig. 2.208 (b), terminals A and B have been short-circuited. Current in the shorted
path due to E, is = 120/40 = 3 A from A to B. Current due to E, is 180/60 = 3 A from Ato B. Hence
Isc = 6A. With batteries removed, the resistance of the network when viewed from open-circuited
terminals is =40 || 60 = 24 Q.

0] WhenR, = 12 Q L =6x24(24+12)=4A

(ii) WhenR, = 24 Q || = 62=3A

(iii) WhenR, = 36 Q |L = 6x 24/(24 +36) = 2.4 A.
Rl R3 Rl A I

Q 6A §24 R,

(@) () (C) (@)
Fig. 2.208

Example 2.102. Using Norton’s theorem, calculate the current in the 6-Qresistor in the network
of Fig. 2.209 (a). All resistance are in ohms.

4 10 4 10
4 wwn—C 4 e M—
12A 12A
R |
Isc
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4 c 4 c 10 8SA I
A 4 8: I
8 \
12A g T 8A
L O
T@ és L. g oc %8 R; %2 @T %6 %6
o]
L
£ |
S
g
B D D - -
(c) (d) (e)
Fig. 2.209

Solution. When the branch containing 6 —2 resistance is short-circuited, the given circuit is
reduced to that shown in Fig. 2.209 (b) and finally to Fig. 2.209 (c). As seen, the 12 A current
divides into two unequal parts at point A. The current passing through 4 Qresistor forms the short-
circuit current Ig..

Resistance R; between points C and D when they are open-circuited is

_ (4 8 (0 2 5
i @4 8 (@ 2

It is so because the constant-current source has infinite resistance i.e., it behaves like an open
circuit as shown in Fig. 2.209 (d).

Hence, Norton’s equivalent circuit is as shown in Fig. 2.209 (e). As seen current of 8 A is
divided equally between the two equal resistances of 6 Q each. Hence, current through the required
6 Q resistor is 4 A.

R

8
e = 12xg=7=8A

Example 2.103. Using Norton’s theorem, find the current which would flow in a 25 —Q resistor
connected between points N and O in Fig. 2.210 (a). All resistance values are in ohms.
Solution. For case of understanding, the given circuit may be redrawn as shown in Fig. 2.210
(b). Total current in short-circuit across ON is equal to the sum of currents driven by different batter-
ies through their respective resistances.
lge = %+%+%=5.5A
The resistance R; of the circuit when looked into from point N and O is

1 _ 1.1, 1 7+ 5_20H_
R 5+10+20—20£2, Ri—7Q—2.86£2

l 0V 5 = oV K
10 == % 5
U\ o 30 V {20V 02 [ So

(N 20V 20
( } ] /) w \
(@)

Fig. 2.210




Hence, given circuit reduces to that

shown in Fig. 2.211 (a).

Open-circuit voltage across NO is = I-R;

=55%x 2.86=15.73V

Hence, current through 25-Qresistor con-
nected across NO is [Fig. 2.211 (b)]

| 15.73/25 = 0.65 A

2.86
or 1=5% 3% 25
Example 2.104. With the help of

Norton’s theorem, find V in the circuit shown
in Fig. 2.212 (a). All resistances are in ohms.
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(D)

056A. y

—5.5A —5.5A
ANN— AN
2.86 2.86
i 25 I
- AW
o N o
(@) (b)
Fig. 2.211

Solution. For solving this circuit, we will Nortonise the circuit to the left to the terminals 1 -1’
and to the right of terminals 2 -2 , as shown in Fig. 2.212 (b) and (c) respectively.

15A

ol’

%

7.5A

®

2 42

2/

4}.‘/
R
(@)

!
|
!

Fig. 2.213

2'0-

(D)2sa

10A

58

(c)

The two equivalent Norton circuits can now be put back across terminals 1-1” and 2-2’, as
shown in Fig. 2.213 (a).
The two current sources, being in parallel, can be combined into a single source of 7.5 + 2.5 =
10 A. The three resistors are in parallel and their equivalent resistancesis 2 || 4 || 4 =1 Q The value
of V, as seen from Fig. 2.213 (b) isV,=10x 1=10 V.
Example 2.105. For the circuit shown in Fig. 2.214 (a), calculate the current in the 6 Q resis-
(Elect. Tech. Osmania Univ. Feb. 1992)

tance by using Norton’s theorem.

4

4

T

2 4V

_|

A

24

(@)

|

Fig. 2.214

(©

T
%6
|
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Solution. As explained in Art. 2.19, we will replace the 6 Q resistance by a short-circuit as
shown in Fig. 2.214 (b). Now, we have to find the current passing through the short-circuited termi-
nals A and B. For this purpose we will use the mesh analysis by assuming mesh currents I, and 1,,.

From mesh (i), we get

3-41,-4(,-1,)+5

From mesh (ii), we get

-21,-4-5-4(,-1) =0 or 41, -61,=9 ()]

From (i) and (ii) above, we get I, = -5/4

The negative sign shows that the actual direction of flow of I, is opposite to that shown in Fig.
2.214 (b). Hence, Iy, =1 =1, =-5/4 Ai.e. current flows from point B to A.

After the terminals A and B are open-circuited and the three batteries are replaced by short-
circuits (since their internal resistances are zero), the internal resistance of the circuit, as viewed from
these terminals’ is

0 or 21,-1,=2 ()]

R = Ry=2+4(4=4Q

I
The Norton’s equivalent circuit consists of a constant current source of 5/4 A in parallel with a
resistance of 4 Q as shown in Fig. 2.214 (c). When 6 Q resistance is connected across the equivalent
circuit, current through it can be found by the current-divider rule (Art).

Current through 6 Q resistor = %x % =0.5from B to A

2.27. General instructions For Finding Norton Equivalent Circuit

Procedure for finding Norton equivalent circuit of a given network has already been given in Art.
That procedure applies to circuits which contain resistors and independent voltage or current sources.
Similar procedures for circuits which contain both dependent and independent sources or only
dependent sources are given below :

(@) Circuits Containing Both Dependent and Independent Sources

(i) Find the open-circuit voltage v_with all the sources activated or “alive’.

(ify Find short-circuit current iy, by short-circuiting the terminals a and b but with all sources
activated.

(i) Ry =V, /i

oc' 'sh

(b) Circuits Containing Dependent Sources Only
() ig=0.
(ify Connect 1 A source to the terminals a and b calculate v,
(i) Ry=v,/1.
Example 2.106. Find the Norton equivalent for the transistor amplifier circuit shown is Fig.
2.215 (a). All resistances are in ohms.

200 200

(@) () (c)
Fig. 2.215
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Solution. We have to find the values of iy, and R It should be noted that when terminals a and
b are short-circuited, v, = 0. Hence, in that case, we find from the left-hand portion of the circuit that
i=2/200 = 1/100A = 0.01 A. As seen from Fig. 2.215 (b), the short-circuit across terminals a and b,
short circuits 20 Q resistance also. Hence, iy, = -5i=-5x 0.01 =-0.05 A.

Now, for finding R, we need v, = v, from the left-hand portion of the Fig. 2.215 (a). Applying
KVL to the closed circuit, we have

2-200i-v, =0 ()

Now, from the right-hand portion of the circuit, we find v,, = drop over 20 Qresistance = —20 x
5i =100 i. The negative sign is explained by the fact that currert flows from point b towards point
a. Hence, i = —v,/100. Substituting this value in Eqgn. (i). above, we get

2 =200 (—v,/100) —v,, = 0 or v, ,=-2V

- Ry = Vufig, = —2/-0.05 = 40 Q

Hence, the Norton equivalent circuit is as shown in Fig. 2.215 (c).

Example 2.107. Using Norton’s theorem, compute current through the 1-Qresistor of Fig.
2.216.

Solution. We will employ source conversion technique to simplify the given circuit. To begin
with, we will convert the three voltge sources into their equivalent current sources as shown in Fig.
2.216 (b) and (c). We can combine together the two current sources on the left of EF but cannot
combine the 2-A source across CD because of the 3-Qresistance between C and E.

2 E 3 C A
AW — AN o
= T 24Vl
6V
(@) | = 12£ %1
T12v |
F X D T3
o o—AWW—o T
" 6 Tev 24V[ %
= TE:
[uv
o l 3 l o
—0 go AW oC 0 O
© (D §6 Q §6 CD §12 %
2A 1A 2A
—0 ﬁlf): D —0  ©
Fig. 2.216

In Fig. 2.217 (b), the two current sources at the left-hand side of 3 Qresistor have been replaced
by a single (2 A+ 1 A) = 3 A current source having a single parallel resistance 6 || 6 = 3 Q
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€ A

CéA 6 GIDA %6 <5A e &1 Q3A %3 QSA 52 %
F(a) ’

D B D

®)
F c 4 I 4

3A 1.5A 2A 3.5A
® = ® 2 O =3B =
—ob D B B

(c) (d) (e)
Fig. 2.217

We will now apply Norton’s theorem to the circuit on the left-hand side of CD [Fig. 2.217 (c)]
to convert it into a single current source with a single parallel resistor to replace the two 3 Qresistors.
As shown in Fig. 2.217 (d), it yields a 1.5 A current source in parallel with a 6 Qresistor. This current
source can now be combined with the one across CD as shown in Fig. 2.217 (e). The current through
the 1-Qresistor is

| = 35x4/(4+1)=2.8A

Example 2.108. Obtain Thevenin’s and Norton’s equivalent circuits at AB shown in Fig.
2.218 (a). [Elect. Network, Analysis Nagpur Univ. 1993]

Solution. Thevenin’s Equivalent Circuit

We will find the value of V,, by using two methods (i) KVL and (ii) mesh analysis.

X 5 (x-y) 8 3 5 8 3
W WA AW WA AW

Y —
20V<> ()SOV %4 20V
2 i WA oB

o

(jsov §4

o

(@ ®)
Fig. 2.218
(@) Using KVL
If we apply KVL to the first loop of Fig. 2.218 (a), we get

80-5x—-4y =0 or 5x+4y=80 (D)
From the second @ loop, we have
-1 (x-=y)+20+4y =0 or 1lx-15y=20 (D)

From (i) and (ii), we getx = 10.75 A; y= 6.56 Aand (x —y) =4.2 A.

Now, V,, =V, i.e. voltage of point A with respect to point B. For finding its value, we start from
point B and go to point A either via 3 Qresistance or 4 Qresistance or (5 + 8) = 13 Qresistance and
take the algebraic sum of the voltage met on the way. Taking the first route, we get

Vg = 20+3(x—y)=-20+3x 42=-74V

It shows that point A is negative with respect to point B or, which is the same thing, point B is

positive with respect to point A.
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(b) Mesh Analysis [Fig. 2.218 (b)]

Here, Ry =9; R,=15R, =4
9 4|l _ [80]. A _125_1a—
‘ 4 15‘ | = ‘20‘, A=135-16=119
= |9 38|z a8 8-
I, = 1280/119=10.75A; 1,=500/119 =42 A
Again Vg = —20+126=-74V
Value of Ry,

For finding R;,, we replace the two voltage sources by short-circuits.
Ry, = Rg=311(8+4]5)=232Q
The Thevenin’s equivalent circuit becomes as shown in Fig. 2.219 (c). It should be noted that
point B has been kept positive with respect to point A in the Fig.

Example 2.109. Find current in the 4 ohm resistor by any three methods.
[Bombay University 2000]

6V A |6V g X
A | B +I :,
s [ 1
5A i) 320 2A) 24Q 5A i 20 2A \
: A 7A ‘
(0] 1, 13 (¢} ‘ Y
(@) (b)

Fig. 2.219

Solution. Method 1 : Writing down circuit equations, with given conditions, and marking
three clockwise loop-currents as iy, i, and is.

i, = 5A, due to the current source of 5 Amp

V, =V = 6V, due to the voltage source of 6 Volts
i, —i, = 2 A, due to the current source of 2 Amp.
Vy = (i) 2, Vg=izx 4

With these equations, the unknowns can be evaluated.
2(p-i,)—4i; =6,2(5-,)-4(2+i,)=6
This gives the following values : i, = -2/3 Amp., i; = 4/3 Amp.
V, = 34/3volts, V, = 16/3 volts
Method 2 : Thevenin’s theorem : Redraw the circuit with modifications as in Fig. 2.219 (b)
Ry = +14-6=8V
Ry = 2 ohms, looking into the circuit form X-Y terminals after
de-activating the sources
I, = 8/(2+4)=4/3 Amp.
Method 3 : Norton’s Theorem : Redraw modifying as in Fig. 2.219 (c)
Iy = 2+2=4Amp.
This is because, X and Y are at ground potential, 2-ohm resistor has to carry 3 A and hence from
5-Amp. source, 2-Amp current is driven into X-Y nodes.
Ry = 2ohms
Then the required current is calculated as shown in Fig. 2.219 (d)
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A |6V B X X
+1 =24 4A 8/3 )
5 A 2A Iy [ 4|aa 320 £4Q
I > 2
2Q
0 0 Y.
Fig. 2.219 (¢) Evaluation of /,, Fig. 2.219 (d)

Note : One more method is described. This transforms the sources such that the current through 4-ohm
resistor is evaluated, as in final stage shown in Fig. 2.219 (j) or in Fig. 2.219 (k).

o 40 20 40
o 7
D T [ s
Y
o Y
Fig. 2.219 (e) Fig. 2.219 (f) Fig. 2.219 (h)
., B X : 2
L 2Q
20 £40 40
A
4A 4/3 amp
830 4/3 A | .
> % (0] Y
Fig. 2.219 (j) Fig. 2.219 (k)
Example 2.109. (a). Find Mesh currentsi, and i, Lo -
in the electric circuit of Fig. 2.219 (m) A B A C
[U.P. Tech. University, 2001]

Solution. Mark the nodes as shown in Fig. 2.219 (m). . e +

Treat O as the reference node. w(O ) i, ) vO
- 1 —

From the dependent current source of 3i; amp

between B and O, +
i,—i,=3i, or 4i =i, (3 o 0
Vg isrelated to V,, V. and the voltage across resis- Fig. 2.219 (m)
tors concerned
Vg = Va—ipx1=4-
Vg = Vo +i,x 2=3+2i,
Hence 4 —i, = 3+2i, ..(b)
From equations (a) and (b) above, i; = 1/9 amp and i, = 4/9 amp
Substituting these, Vg = 35/9 volts

Example 2.109 (b). Determine current through 6 ohm resistance connected across A-B termi-
nals in the electric circuit of — 2.219 (n), using Thevenin’s Theorem. [U.P. Tech. Univ. 2001]
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A -B,

6Q 4Q
WAWMA c WA oA
30
+ +
6V = 15 V_T § o
°B
Fig. 2.219 (n)
Solution. Applying Thevenin’s theorem, after detaching the 6-ohm resitor from terminals
Voy = Ve =15-1x 3 =12 volts
Ryy = 4+3/6=60hms

12/(6 + 6) = lamp
Example 2.109 (c). Applying Kirchoff’s Current Law, determine current | in the electric circuit

of Fig. 2.219 (p). TakeV,=16V. [U.P. Tech. Univ. 2001]
A 4Q B
WMWAM— : o
. ? Iy 2 amp T
6Q V] VO
_ 8Q
ONE 4!
I +1,
1/4 v, 2 amp
.0 p—
Fig. 2.219 (p)
Solution. Mark the nodes A, B, and O and the currents associated with different branches, as in
Fig. 2.219 (p).
Since V, = 16V, the current through 8-ohm resistor is 2 amp.
KCL at node B : V4V, = 2+i, ..(a)
KCL at node A : I +i, = V,/6 ..(b)
Further, V, = V,, Vg =16, Vg -V, =4i, ...(C)

From (a) and (c), i, = 1 amp. This gives V, -V, = 12 volts, and I =1 amp

The magnitude of the dependent current source = 3 amp

Check : Power from 1 amp current source =1x 12=12W

Power from dependent C.S. of 3A=3x 16 =48 W

Sum of source-output-power = 60 watts

Sum of power consumed by resistors = 22x 6+ 1%x 4+ 2% x 8= 60 watts

The power from sources equal the consumed by resistors. This confirms that the answers obtained

are correct.

Norton’s Equivalent Circuit

For this purpose, we will short-circuit the terminals A and B find the short-circuit currents produced

by the two voltage sources. When viewed from the side of the 80-V source, a short across AB short-
circuits everything on the right side of AB. Hence, the circuit becomes as shown in Fig. 2.230 (a).
The short-circuit current 1, can be found with the help of series-parallel circuit technique. The total
resistance offered to the 80 —V source is5+4 |8 =23/3 Q
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| =80x3/23=1043 A; .. I,=10.43 x4/12=3.48 A.

When viewed from the side of the 20-V source, a short across AB short-circuits everything beyond
AB. In the case, the circuit becomes as shown in Fig. 2.230 (b). The short circuit current flowing
from B to A = 20/3 = 6.67 A.

I 5 8 i 1 3
——AW— AW T —— — 0A
- A A -20V
()80 Vo 34 sc| . C) CD S23
- 1 3.19A
I
<2 —oB
(a) (b) (c)
Fig. 2.220
Total short-circuit current = 6.67-3.48=3.19A ... from B to A.

Ry = Ry=3[(8+4]5)=232Q
Hence, the Norton’s equivalent circuit becomes as shown in Fig. 2.220 (c).

2.28. Millman’s Theorem

This theorem can be stated either in terms of voltage sources or current sources or both.
(@) As Applicable to Voltage Sources

This Theorem is a combination of Thevenin’s and Norton’s theorems. It is used for finding the
common voltage across any network which contains a number of parallel voltage sources as shown in
Fig. 2.221 (a). Then common voltage V,5 which appears across the output terminals A and B is
affected by the voltage sources E,, E, and E;. The value of the voltage is given by
E/R+E,/R+Ey /Ry i+l +13 5

1/R +1/R,+1/R, G, +G,+G, 3G

This voltage represents the Thevenin’s voltage V,,. The resistance R, can be found, as usual, by
replacing each voltage source by a short circuit. Ifthere is a load resistance R, across the terminals A
and B, then load current I, is given by

IL = Vi/(Ry +RY)
If as shown in Fig. 2.222 (b), a branch does not contain any voltage source, the same procedure

is used except that the value of the voltage for that branch is equated to zero as illustrated in Example
2.210.

Vag =

<|>A oA

v,
%RL §6 5 %RL
"El 'E2 "E3 : T 6V T12V
oB oB
Fig. 2.221 Fig. 2.222

Example 2.110. Use Millman’s theorem, to find the common voltage across terminals A and B
and the load current in the circuit of Fig. 2.222.
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Solution. As per Millman’s Theorem,
6/2+0/6+12/4 6

Ve = Tr2s1es1/4 1wz o0V
V, = 655V
R, = 2]|6]/4=12/110

- Vo __ 655 _jg5p

= R +R@2/1D+5
(b) As Applicable to Current Sources

This theorem is applicable to a mixture of parallel voltage and current sources that are reduced
to a single final equivalent source which is either a constant current or a constant voltage source. This
theorem can be stated as follows :

Any number of constant current sources which are directly connected in parallel can be converted
into a single current source whose current is the algebraic sum of the individual source currents and
whose total internal resistances equals the combined individual source resistances in parallel.

Example 2.111. Use Millman’s theorem, to find the voltage across and current through the load
resistor R, in the circuit of Fig. 2.223 (a).

Solution. Firstthing to do is to convert the given voltage sources into equivalent current sources.
It should be kept in mind that the two batteries are connected in opposite direction. Using source
conversion technique given in Art. 1.14 we get the circuit of Fig. 2.223 (b).

4 A
o— O—
a 424V A

R E (D) 3 1) el

§6 4A

12V
[ 5 5

o— o—
(@) (®)

Fig. 2.223

QiA %12

The algebraic sum of the currents =5+ 3 4 =4 A. The combined resistance is=12 || 4| 6 =
2 Q The simplified circuit is shown in the current—source form in Fig. 2.224 (a) or voltage source
form in Fig. 2.224 (b).

—04 —o04 +A
4A 2 2
® 2 = 828,
[ 8V T 8V
oB oB §_
(@) ®) ()
Fig. 2.224

As seen from Fig. 2.224 (c).
I, = 8/(2+8)=08A;V =8x08=64V
Alternatively, V, =8x8/(2+8)=64V
Following steps are necessary when using Millman’s Theorem :
1. convert all voltage sources into their equivalent current sources.
2. calculate the algebraic sum of the individual dual source currents.
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3. if found necessary, convert the final current source into its equivalent voltage source.

As pointed out earlier, this theorem can also be applied to voltage sources which must be initially
converted into their constant current equivalents.

2.29. Generalised Form of Millman’s Theorem

This theorem is particularly useful for solving many circuits 0'
which are frequently encountered in both electronics and power ® ——n
applications. 1

Consider a number of admittances G,, G,, G;... G,, which

the admittances are numbered as 1, 2, 3....n. Let O be any other

|
|
g

terminate at common point 0° (Fig. 2.225). The other ends of %GI G, %(;3 %GK
L .- |
point in the network. It should be clearly understood that it is |
|

not necessary to know anything about the inter-connection U ) U3 n
between point O and the end points 1, 2, 3...n. However, what is
essential to know is the voltage drops from0to 1,0t0 2, ...0to Fig. 2.225
n etc.
According to this theorem, the voltage drop from0to 0" (V) is given by
. ViG 1 + VG, +VaGs + ... +VOnGn
@ G +G, +Gy+....... +G,
Proof
\oltage drop across G, = Vi =(Voo = Vo)
Current through G, = I =V G =(Vyy Vo) Gy
Similarly, Lo = Voo Vi) G,
30" =(Voo" ~Voa) Gs
and Lo = Voo Vor) G,
By applying KCL to point 0" , we get
Lo +ly +ontly =
Substituting the values of these currents, we get
, VoiG1 + VoG, +VsGs + v +Vo, G,
Vo = Gy +Gy + Gy + v, +G,
Precaution L 50 o 20 3
It is worth repeating that only those resis- AW MW
tances or admittances are taken into consider-
ation which terminate at the common point. All 150 V
those admittances are ignored which do not ter- E 10 40 — %60
minate at the common point even though they [ 120 V
are connected in the circuit.
Example 2.112. Use Millman’s theorem to ®
calculate the voltage developed across the 0

40 Qresistor in the network of Fig. 2.226. Fig. 2.226
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Solution. Let the two ends of the 40 Q resistor be marked as 0 and 0’ . The end points of the
three resistors terminating at the common point 0 have been marked 1, 2 and 3. As
already explained in Art. 2.29, the two resistors of values 10 Q and 60 Q will not come into the
picture because they are not direclty connected to the common point 0 .

Here,

Vo, =-150V; V,,=0; Vy3=120 V
G, = 1/50; =1/40: =1/20
_ = 150/50) + (0/40) + (120/20) _316V
(1/50) + (1/40) + (1/20)

It shows that point O is at a higher potential as compared to pomt 0.

Vi

Example 2.113. Calculate the voltage across the 10 Q
resistor in the network of Fig. 2.227 by using (a) Millman’s
theorem (b) any other method.

Solution. (a) As shown in the Fig. 2.227 we are re-
quired to calculate voltage Vo, . The four resistances are "7, 100 10
connected to the common terminal 0" .
Let their other ends be marked as 1, 2, 3 and 4 as shown '[ 100 V 3
in Fig. 2.227. Now potential of point 0 with respect to point
lis (Art 1.25) — 100 V because (see Art. 1.25) Fig. 2.227
Vg = -100V; V,=-100V; V03 0V, Vg, =0V
G, = 1/100 = 0.01 Siemens ; G, = 1/50 = 0.02 Siemens,
G; = 1/100 = 0.01 Siemens; G, =1/10=0.1 Siemens
Vo1 G1 +V0aGy +VigsGs +VisGy
G +G,+G;+G,
100 0.01 ( 100) 0.02 0. 0.01 0 0.1 3

- 214V
- 0.01 0.02 0.01 01 0.14

Also, Vg = Voo =214V

(b) We could use the source conversion technique (Art. 2.14) to solve this question. As shown
in Fig. 2.228 (a), the two voltage sources and their series resistances have been converted into current
sources with their parallel resistances. The two current sources have been combined into a single
resistance current source of 3 A and the three parallel resistances have been combined into a single
resistance of 25 Q. This current source has been reconverted into a voltage source of 75 V having a
series resistance of 25 Qas shown in Fig. 2.228 (c).

O

OI 0I 0/

|
CDIA 100 1§A %50 %100 %10 QSA %25 %10 izs 210
T

5V

0
(a) (b) (c)
Fig. 2.228

Using the voltage divider formula (Art. 1.15), the voltage drop across 10 Q resistance is
Vo o=75x 10/(10 + 25) =21.4 V.
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Example 2.114. In the network shown in Fig. 2.229, using Millman’s theorem, or otherwise find
the voltage between A and B. (Elect. Engg. Paper-I Indian Engg. Services 1990)

Solution. The end points of the different admittances 1 50
which are connected directly to the common point B have —L 1 B
been marked as 1, 2 and 3 as shown in the Fig. 2.229. 20
Incidentally, 40 Qresistance will not be taken into consider- 50 v 40 10
ation because it is not directly connected to the common 2 +

3

point B. Here Vy, = V,, = 50V ; Vg, = V,, =100 V ; %IOOV
Yoo ™ Yo =0V 50/50 Fig. 2.229 !
— + (100/20) + (0/10 ig. 2.
Vo =Vsa = ¢ (sto; T Eyzo) +)(111(0) }=23sv
Since the answer comes out to be positive, it means that point A is at a higher potential as com-
pared to point B.
The detailed reason for not taking any notice of 40 Qresistance are given in Art. 2.29.

2.30. Maximum Power Transfer Theorem

Although applicable to all branches of electrical engineering, this theorem is particularly useful
for analysing communication networks. The overall efficiency of a network supplying maximum
power to any branch is 50 per cent. For this reason, the application of this theorem to power transmis-
sion and distribution networks is limited because, in their case, the goal is high efficiency and not
maximum power transfer.

However, in the case of electronic and communication networks, very often, the goal is either to
receive or transmit maximum power (through at reduced efficiency) specially when power involved
is only a few milliwatts or microwatts. Frequently, the problem of maximum power transfer is of
crucial significance in the operation of transmission lines and

antennas. o I
As applied to d.c. networks, this theorem may be stated as

follows : % R
A resistive load will abstract maximum power from a Rg

the network as viewed from the output terminals, with all energy
sources removed leaving behind their internal resistances.

In Fig. 2.230 (a), a load resistance of R is connected across
the terminals A and B of a network which consists of a generator
of em.f. Eand internal resistance R and a series resistance R
which, in fact, represents the lumped resistance of the connecting
wires. LetR; =R, + R = internal resistance of the network as viewed from A and B.

According to this theorem, R, will abstract maximum power from the network when R, =R,.

|

| |
| |
| |

network when the load resistance is equal to the resistance of : + | R,

| |
| |
| |
| |

Fig. 2.230

A E
Proof. Circuit current | =
roo R +R
Power consumed by the load is
E°R
P, = IR, = L (i
L L (RL + Ri)2 ()
. dP.

For P to be maximum, —== =0.

'R,
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Differentiating Eq. (i) above, we have

R _ 1 ) 2 1 2R
dr, E 7 tR 7 ||7E 2 . 3
L (R.+R) (R.+Ry) (R, +R) (R, +R)

EZLR iR)z_(szLR)J or 2R =R_+R, or R =R
L i L i

It is worth noting that under these conditions, the voltage across the load is hold the open-circuit
voltage at the terminals A and B.

) E°R, _ E2 _E?
Max. powerisP, . = 4RE T4R, 4R

Let us consider an a.c. source of internal impedance (R, + j X,) supplying power to a load
impedance (R, + jX;). It can be proved that maximum power transfer will take place when the
modules of the load impedance is equal to the modulus of the source impedance i.e. | Z, | =|Z, |

Where there is a completely free choice about the load, the maximum power transfer is obtained
when load impedance is the complex conjugate of the source impedance. For example, if source
impedance is (R, +jX,), then maximum transfer power occurs, when load impedance is (R, -X;). It
can be shown that under this condition, the load power is = E2/4R1.

Example 2.115. In the network shown in Fig. 2.231 (a), find the value of R, such that maximum
possible power will be transferred to R, . Find also the value of the maximum power and the power
supplied by source under these conditions. (Elect. Engg. Paper I Indian Engg. Services)

Solution. We will remove R, and find the equivalent Thevenin’s source for the circuit to the left
of terminals A and B. As seen from Fig. 2.231 (b) V,,, equals the drop across the vertical resistor of 3Q2
because no current flows through 2 Qand 1 Qresistors. Since 15V drops across two series resistors
of 3 Qeach, V,, = 15/2 =7/5 V. Thevenin’s resistance can be found by replacing 15 V source with a
short-circuit. As seen from Fig. 2.231 (b), Ry, =2+ (3| 3) + 1= 4.5 Maximum power transfer to
the load will take place when R =R, =4.5Q

3 2 4 3 2y 4
— AW — W5 — AW —MWW—5 —
45
(v 23 RE()s5v 3 SR,
75v( )V,
1 p 1 p
(a) (b) © B
Fig. 2.231

Maximum power drawn by R, = sz lAx R = 7.5°4 % 4.5=3.125 W.
Since same power in developed in R, power supplied by the source = 2 x 3.125 = 6.250 W.
Example 2.116. In the circuit shown in Fig. 2.232 (a) obtain the condition from maximum

power transfer to the load R, . Hence determine the maximum power transferred.
(Elect. Science-I Allahabad Univ. 1992)
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® 210 CéA 210
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M—7MW—0

1.5A

®

g

5 3

(@)

(b)

—0
B

(©

o

Fig. 2.232

Solution. We will find Thevenin’s equivalent circuit to the left of
trminals A and B for which purpose we will convert the battery source
into a current source as shown in Fig. 2.232 (b). By combining the two
current sources, we get the circuit of Fig. 2.232 (c). It would be seen that
open circuit voltage V5 equals the drop over 3Qresistance because there
is no drop on the 5Qresistance connected to terminal A. Now, there are
two parallel path across the current source each of resistance 5 € Hence, =
current through 3 Qresistance equals 1.5/2 = 0.75 A. Therefore, V,g =
Vi, =3 x 0.75 = 2.25 V with point A positive with respect to point B.

For finding R g, current source is replaced by an infinite resistance.

: Ryg = Rp=5+3]|(2+5)=71Q

The Thevenin’s equivalent circuit alongwith R, is shown in Fig. 2.233. As per Art. 2.30, the
condition for MPT isthat R, = 7.1 Q

Maximum power transferred = Vtﬁ /4R, = 2.25°14% 7.1=0.178 W =178 mW,

Example 2.117. Calculate the value of R which will absorb maximum power from the circuit of
Fig. 2.234 (a). Also, compute the value of maximum power.

Fig. 2.233

Solution. For finding power, itis essential to know both I and R. Hence, it is essential to find an
equation relating 1 to R.

10 A
A

= RS 5% = oS3

120 V 120V l

B B
(a) ()
4 4
o o VYN
3 |,
12A ( 6A
210 fh 35 (D 210 53 —60v R

5 e B © °

Fig. 2.234
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Let us remove R and find Thevenin’s voltage V,, across A and B as shown in Fig. 2.234 (b). It
would be helpful to convert 120 V, 10-Qsource into a constant-current source as shown in Fig. 2.234
(c). Applying KCL to the circuit, we get

Vin ., Vin
1075

Now, for finding R; and Ry, the two sources are reduced to zero. Voltage of the voltage-source is
reduced to zero by short - circuiting it whereas current of the current source is reduced to zero by
open-circuiting it. The circuit which results from such source suppression is shown in Fig. 2.234 (d).
Hence, R; =R, = 10| 5=10/3 &2 The Thevenin’s equivalent circuit of the network is shown in Fig.
2.234 (e).

According to Maximum Power Transfer Theorem, R will absorb maximum power when it equals
10/3 Q Inthatcase, | =60 +20/3=9 A

P = PR=9°x10/3=270 W

max

= 12+6 or V,=60V

2.31. Power Transfer Efficiency

If P, is the power supplied to the load and P is the total power supplied by the voltage source,
then power transfer efficiency is given by n=P /P,.

Now, the generator or voltage source E supplies power to both the load resistance R, and to the
internal resistance R; = (Rg +R).

_ 2 2
P; P .+P;, or ExI=IR_+I'R,

_ R IZRL __ R 1
TR IR +1°R RL+R 1+ (Ri/R)

The variation of nwith R,_is shown in Fig. 2.235 (a). The maximum value of nis unity when
R, =ecand has a value of 0.5when R =R;. It means that under maximum power transfer conditions,
the power transfer efficiency is only 50%. As mentioned above, maximum power transfer condition
is important in communication applications but in most power systems applications, a 50% efficiency
is undesirable because of the wasted energy. Often, a compromise has to be made between the load
power and the power transfer efficiency. For example, if we make R, = 2 R;, then
P. = 0222 E’R; and m=0.667.
It is seen that the load power is only 11% less than its maximum possible value, whereas the
power transfer efficiency has improved from 0.5 to 0.667 i.e. by 33%.

na P A

10fF——————————==

0.5F—————

\j

=
il
=

Sy
&
w5

Fig. 2.235
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Example 2.118. Avoltage source delivers 4 Awhen the load connected to it is 5 Qand 2 A when
the load becomes 20 2 Calculate

(a) maximum power which the source can supply (b) power transfer efficiency of the source
with R, of 20 (c) the power transfer efficiency when the source delivers 60 W.

Solution. We can find the values of E and R; from the two given load conditions.

(@ WhenR =5Q 1=4AandV=IR =4x5=20V,then20=E 4R, ()

WhenR =20Q I=2AandV=1IR =2x20=40V .. 40=E-2R, (i)

From (i) and (ii), we get, R; = 10 Qand E = 60 V

WhenR =R;=10Q

_ E? _60x60

Lmax — 4_Ri_ 4%10
(b) When R, =20 Q the power transfer efficiency is given by
RLR+L 5 =% = 0.667 or 66.7%

(c) For finding the efficiency corresponding to a load power of 60 W, we must first find the
value of R,

P =90W

’n:

2
B E
Now, P = [Ri +RL] R,
60> x R
60 = ——L R’ —-40R_+100=0
(R_+10)
Hence R, =37.32Q or 268 Q
Since there are two values of R, there are two efficiencies corresponding to these values.
_ 3732 _ o oo 268 _ .
uft 373210 0.789 or 78.9%, m= 1559 =0211 or 21.1%

It will be seen from above, themy + 1, = 1.

Example 2.119. Two load resistance R; and R, dissipate the same power when connected to a
voltage source having an internal resistance of R.. Prove that (a) R’ = R;R, and (b)  + i, = 1.
Solution. (a) Since both resistances dissipate the same amount of power, hence
_ _ER __ER
(R +R)* (R, +R)’
Cancelling E®and cross-multiplying, we get
R, R, + 2R, R, R, +R, R*=R,R,*+ 2R R, R, + R, R
Simplifying the above, we get, Ri2 = R/ R,
(b) Ifn and m, are the two efficiencies corresponding to the load resistances R, and R,, then

L

R, R, _ 2RR+R(R+R)
W+ = R+R R +R RR +R*+R(R +Ry)

Substituting Ri2 =R; R,, we get

2R +R(R, +R,)
Nt T RZLRR 4R,
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Example 2.120. Determine the value of R, for maximum power at the load. Determine maxi-

mum power also. The network is given in the Fig. 2.236 (a). [Bombay University 2001]
3Q 1Q
VWW\
1Q %49 3Q
+ + +

Fig. 2.236 (a)

Solution. This can be attempted by Thevenin’s Theorem. As in the circuit, with terminals A and
B kept open, from the right hand side, Vg (w.r. to reference node 0) can be calculated V, and Vg will
have a net voltage of 2 volts circulating a current of (2/8) = 0.25 amp in clockwise direction.

Vg = 10-0.25x 2 =9.5 volts.
On the Left-hand part of the circuit, two loops are there. V, (w.r. to 0) has to be evaluated. Let

the first loop (with V, and V, as the sources) carry a clockwise current of i, and the second loop (with
V, and V, as the sources), a clockwise current of i,. Writing the circuit equations.

8i —4i, = +4
—4i + 8i, = +4
This gives i, = 1 amp, i, = 1 amp
Therefore, V, = 12+3x 1=15volts.

Thevenin —voltage, Vo = V,—Vg=15-95=55volts

R
3Q 1Q /RTh / i
A B 40 A B
1Q 4Q 3Q 2Q 2Q 1.5Q 1.5Q

Fig. 2.236 (b) Fig. 2.236 (c)
Solving as shown in Fig. 2.236 (b) and (c).
Ry =3 0ohms

For maximum power transfer, R, =3 ohms
Current = 5.5/6 = 0.9167 amp
Power transferred to load 0.9167% x 3 = 2.52 watts.

Example 2.121. For the circuit shown below, what will be the value of R to get the maximum
power ? What is the maximum power delivered to the load ? [Bombay University 2001]
Solution. Detach R, and apply Thevenin’s

Theorem. 200 60 Q
- - 180 Q
V;y = 5.696 volts, Ry, = 11.39 Q 900
R, must be 11.39 ohms for maximum power 10V R,
transfer.

Pmax =0.712 watt. Fig. 2.237
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Example 2.122. Find the maximum power in ‘R, *which is variable in the circuit shown below

in Fig. 2.238. [Bombay University, 2001]
Solution. Apply Thevenin’s theorem. For this
R, has to be detached from nodes A and B. Treat O 200 -
as the reference node. + PRV
—— 100V A B
V,=60V,Vg =V +2=50+2=52V _ +|,= C
Thus, V= V,5 = 8 volts, with A positive w.r. to R
B, Ry, = (60//40) + (50//50) = 49 ohms 60 Q 500

Hence, for maximum power, R, =49 ohms
With this R, Current=8/98 amp =0.08163amp o

Power to Load = i® R, = 0.3265 watt Fig. 2.238
Example 2.123. Find V,and Vg by “nodal analysis™ for the circuit shown in Fig. 2.239 (a).
[Bombay University]

Solution. Let the conductance be represented by g. Let all the sources be current sources. For
this, a voltage-source in series with a resistor is transformed into its equivalent current source. This
is done in Fig. 2.239 (b).

A B

AW MWW
3Q
10Q |+
L 150 ) 13 A T=
+ 18V
T, 7Q
10V
Fig. 2.239 (a)
5Q
- MW E
A 2Q § § 3Q A
10Q
1/3
Fig. 2.239 (b). All Current Sources
A AW E
5Q
20/12 . §
1/3

Fig. 2.239 (¢)
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Observing the circuit, g, = (1/5+0.6=08, 9,,=040+0.2=0.6
g;,= 0.2, Current sources : + 5 amp into ‘A’ + 5.67 amp into ‘B’

0.8 —0.2}
A= |_ = 0.44 o
|1-0.2 06 l 50 ‘
[ 5 -02 A B o
Ay = |67 0.6} =4.134 |
[ 0.8 5 20 gl0@ 13/ A
A = | -02 5.67] =5.526 .
L +
V, = 4.134/0.44 = 9.4 volts, —10V an
Vg = 5.536/0.44 = 12.6 volts.

. . Fig. 2.239 Thevenized Circuit
Current in 5-ohm resistor 9 (@

= (Vg —V,)/5 =0.64 amp
Check : Apply Thevenin’s Theorem :
V, = 10x (10/12)=8.333V
Vg = (17/3) x 25=14.167V

Vi = 14.167 -8.333 = 5.834 V
Ry, = 4.167
l; = 5.834/(4.167 +5)=0.64 A
A B
(]
RTh
A B
o——=o
10Q 15Q 3Q
25Q
10 Q %
17/3 A
10 Q 1 )
Fig. 2.239 (e) Right side simplified Fig. 2.239 (f) Evaluating R

Example. 2.124. Find the magnitude R, for the maximum power transfer in the circuit shown in
Fig. 2.240 (a). Also find out the maximum power.

[3F &

4Q
AN

10V

Fig. 2.240 (a)
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Solution. Simplify by source transformations, as done in Fig. 2.240 (b), (c), (d)

M B
30
2A 50 20 R,
6 A
40 B
ANMNW
Fig. 2.240 (b)
MWV
7Q A
1077 Q
sA E50 %2 Q R,
80/7 V
B
Fig. 2.240 (c) Fig. 2.240 (d)

For maximum power, R,
Maximum power

7+ (10/7) =843 Q
[(80/7)/16.68]° x 8.43 = 3.87 watts.

Tutorial Problems No. 2.6

(@) Norton Theorem
1. Find the Thevenin and Norton equivalent circuits for the active network shown in Fig. 2.241 (a). All
resistance are in ohms. [Hint : Use Superposition principle to find contribution of each source]
[10 V source, series resistor =5 Q; 2 A source, parallel resistance = 5 Q]

2. Obtain the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 2.241 (b). All
resistance values are in ohms.

[15 V source, series resistance =5 Q; 3 A source, parallel resistance =5 )

4A
2 2 A 3 A 15 6 A
AN A o | | AMA o —AM AMA o)
. 3 6
<>6 \ <> 2A + : =20V %10
- 30V 15V
< a 4
) o AMA o)
B B B
Fig. 2.241 (a) Fig. 2.241 (b) Fig. 2.241 (c)

3. Find the Norton equivalent circuit for the active linear network shown in Fig. 2.241 (c). All resis-
tances are in ohms. Hint : It would be easier to first find Thevenin’s equivalent circuit].
[2 A source; parallel resistance = 16 £
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4. Find Norton’s equivalent circuit for the network shown in Fig. 2.249. Verify it through its Thevenin’s

equivalent circuit. [1 A, Parallel resistance = 6 €
5. State the Tellegen’s theorem and verify it by an illustration. Comment on the applicability of Tellegen’s
theorem on the types of networks. (Circuit and Field Theory, A.M.1.E. Sec. B, 1993)

Solution. Tellegen’s Theorem can be stated as under :

For a network consisting of n elements if iy, i,,.....i, are the currents flowing through the elements satisfy-
ing Kirchhoff’s current law and v;, v,......v,, are the voltages across these elements satisfying Kirchhoff’s law,
then

n
"
k 1
where v, is the voltage across and i, is the current through the k;; element. In other words, according to Tellegen’s
Theorem, the sum of instantaneous powers for the n branches in a network is always zero.

This theorem has wide applications. Itis valid for any lumped network that contains any elements linear or
non-linear, passive or active, time-variant or time-invariant.

Explanation : This theorem will be explained with the help of the 8 1
simple circuit shown in Fig. 2.242. The total resistance seen by the battery AMA A
is=8+4|4=10Q

Battery current | = 100/10 = 10 A. This current divides equally at

point B

Drop over 8 Q resistor =8 x 10 =80V 7100 §4 §3

Drop over 4 Qresistor=4x 5=20V

Drop over 1 Qresistor=1x 5=5V

Drop over 3 Qresistor=3x 5=15V

According to Tellegen’s Theorem,

=100x 10-80x 10-20x 5-5x5-15x 5=0
(b) Millman’s Theorem

6. Use Millman’s theorem, to find the potential of point A with respect to the ground in Fig. 2.243.

Fig. 2.242

[V,=8.18 V]
7. Using Millman’s theorem, find the value of output voltage V,, in the circuit of Fig. 2.244. All resistances
are in ohms. [4 V]

~
=

- L Troud

Fig. 2.243 Fig. 2.244 Fig. 2.245

(b) MPT Theorem
8. In Fig. 2.245 what value of R will allow maximum power transfer to the load ? Also calculate the
maximum total load power. All resistances are in ohms.

Voltage Source

[4Q;48 W]
9. Use superposition theorem to find currents in various branches of the ckt in Fig. 2.246.
(B.P.T.U., Orissa 2003) (Nagpur University, Summer 2002)
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10. Find the resistance between point A and B for the circuit shown in Fig. 2.247.

(Nagpur University, Winter 2002)

1Q
4Q B 2Q %
A VWA AW D
1Q 20 1Q 2Q
+
40 (
24V 6A 20
) i ) v 38
1Q 1Q
20
C 19 1Q 1Q
Fig. 246 Fig. 247
11. Apply the superposition theorem and find the current through 25 ohm resistance of the circuit shown
in Fig. 2.248. (Mumbai University 2002) (Nagpur University, Summer 2003)
12. Find the total current flowing through the circuit shown in Fig. 2.249 using stat-delta transformation

if the circuit is excited by 39 volts and the value of each resistor connected in circuit is 4 ohms.
(Ravishankar University, Raipur 2003) (Nagpur University, Summer 2003)

VWW 4Q
4Q 40
v R X
2 Amp 10 Q 39V

30V 4Q 4Q 4Q

AW

Fig. 2.248 Fig. 2.249

13. Compute the power dissipated in the 9 ohm resistor in the Fig. 2.250 by applying Superposition

Theorem. The voltage and current sources should be treated as ideal. All resistances are in ohm.
(Mumbai University 2003) (Nagpur University, Winter 2003)

14. Find the current in 11 ohm resistor in the Fig. 2.251 using star/delta conversion. All resistances
are in ohm. (Nagpur University, Winter 2003)
6
i T T
15
12 ! CT 4A 2% %6 %15
9
T AW VWWA
32V 6 17 11
= o 115V o
Fig. 2.250 Fig. 2.251

15. Calculate current-flowing through ““2 ohms” resistor in Fig. 2.252 by using Superposition theorem.
(Mumbai University 2003) (Nagpur University, Summer 2004)

Fig. 2.252. All resistance are in ohms.




16.

17.

18.

19.

20.

21.
22,

23.

24.

23%

26.

277

1V= § 1Q —60V
( 4 i0)
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State and explain Superposition Theorem.
(Pune University 2003) (Nagpur University, Summer 2004)
A cast iron ring of 40 cm diameter is wound with a coil. The coil carries a current of 3 amp and
produces a flux of 3 mwb in the air gap. The length of air gap is 2 mm. The relative permeability
of the cast iron is 800. The leakage coefficient is 1.2. Calculate no. of turns of the coil.
(Nagpur University, Summer 2004)
Using superposition theorem, calculate the current 1,g in the given circuit of Fig. 2.253.
(Gujrat University, Summer 2003)
Using delta-star transformation, determine the current drawn from the source in the given circuit

Fig.2.254. (Gujrat University,Summer 2003)
B
& AN 8 10
r%“ A
4Q
1Y 50 CS 2Q 1Q
I =
‘ v
Fig. 2.253 Fig. 2.254

State and explain Kirchhoff's laws applied to electric circuit.
(Gujrat University, Summer2003)
State Kirchhoff's laws. (Madras University, April 2002)
Three resistances R,;,, Rbc and Rca are connected in delta. Obtain expressions for their equivalent
star resistances. (V.T.U., Belgaum Karnataka University, February 2002)
In the circuit, shown in Fig. 2.255 determine the value of E so that the current | = 0. Use mesh
method of analysis. (V.T.U., Belgaum Karnataka University, January/February 2004)
In Fig. 2.256 derive the expressions to replace a delta connected resistances by an equivalent star
connected resistances. Determine the resistance between a and b. All the resistance and 1Q each.
(V.T.U., Belgaum Karnataka University, January/February 2004)

g ANV AMAN
1Q 1Q
1Q
AN 7AVAVAV) W Y
1Q 1Q
Fig. 2.255 Fig. 2.256
Determine the values of | and R in the circuit 2i
shown in the Fig. 2.257. (ESE 2003) .

In the circuit shown in the Fig. 2.258, S is closed

attime t=0. Determine i (t) and the time constant. 100 X °X
(Pune University 2003) (ESE 2003) | , % 30 _,

In the circuit shown in the Fig. 2.259. S is closed . .

at t = 0. Find the current i (t) through the ! ! oY oY

capacitor at t = 0.
(Pune University 2003) (ESE 2003)

Fig. 2.257

) 2Q

%S ANAA

AN
t=0 1Q 1Q
f“)
= IF

Fig. 2.258 Fig. 2.259
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OBJECTIVETESTS -2

. Kirchhoff’s current law is applicable to only

(a) closed loops in a network
(b) electronic circuits

(c) junctions in a network
(d) electric circuits.

. Kirchhoff’s voltage law is concerned with

(a) IR drops

(b) battery e.m.fs.
(c) junction voltages
(d) both (a) and (b)

flowing through the terminal A-B will be

A C
3 Linear )
passive \&
network
B : D
Fig. 2.260
() 0.1 A (b) 1A
(c) 10 A (d) 100 A
(ESE 2001)

. According to KVL, the algebraic sum of all 8. The component inductance due to the
IR drops and e.m.f.s in any closed loop of a internal flux-linkage of a non-magnetic
network is always straight solid circular conductor per metre
(@) zero length, has a constant value, and is

. independent of the conductor-diameter,
(b) posm've because
(c) negative (a) Allthe internal flux due to a current remains
(d) determined by battery e.m.fs. concentrated on the peripheral region of

. The algebraic sign of an IR drop is prima- the conductor. ) )

rily dependent upon the (b) The |nt_erna! magnetic flux-density along
t of t flowing th hit the radial distance from the centre of the
(@) amount of current flowing through i conductor increases proportionately to the
(b) valueof R current enclosed
(c) direction of current flow (c) Theentire current is assumed to flow along
(d) battery connection. the conductor-axis and the internal flux is
, . distributed uniformly and concentrically
. Maxwell’s loop current method of solving ; -
. (d) The current in the conductor is assumed to
electrical networks . -
be uniformly distributed throughout the
(@) uses branch currents conductor cross-section
(b) utilizes Kirchhoff’s voltage law (ESE 2003)
(c) is confined to single-loop circuits 9. Two ac sources feed a common variable
(d) is a network reduction method. resistive load as _shown n in Fig. 2.261.
Poi £ the WRONG Inth Under the maximum power transfer

- Pointoutofthe . stat(?ment. n the condition, the power absorbed by the load

node-voltage technique of solving networks, : :
- resistance R, is

choice of a reference node does not
(a) affect the operation of the circuit 80 hA 80
(b) change the voltage across any

element Hos %/RVL oo
(c) alter the p.d. between any pair of

nodes
(d) affect the voltages of various nodes.

. Forthe circuit shown in the given Fig. 2.260, Fig. 2.261
\_Nhen the voltag_e E is 10 V, the curre_nt i (a) 2200 W (b) 1250W
|slA._ If the applied woltage across terminal (c) 1000 W (d) 625 W
C-D is 100 V, the short circuit current (GATE 2003)

ANSWERS
l.c 2.d 3.a 4.c 5.b 6.d
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3.1. Effect of Electric Current

It is a matter of common experience that a conductor, when carrying current, becomes hot
after some time. As explained earlier, an electric current is just a directed flow or drift of electrons
through a substance. The moving electrons as they pass through molecules of atoms of that sub-
stance, collide with other electrons. This electronic collision results in the production of heat. This
explains why passage of current is always accompanied by generation of heat.

3.2. Joule’s Law of Electric Heating

The amount of work required to maintain a current of | amperes through a resistance of R ohm
for t second is

W.D. = IRt joules
= VIt joules (- R=VN)
= Wt joules (. W=V
= VAR joules (- 1=VIR)

This work is converted into heat and is dissipated away. The amount .
of heat produced is :

H = work done _W.D.
mechanical equivalent of heat J
where J = 4,186 joules/kcal = 4,200 joules / kcal (approx)

H = 1?Rt/4,200 kcal = VIt/4,200 kcal
= Wt/4,200 kcal = V2t/4,200 R kcal

3.3. Thermal Efficiency

It is defined as the ratio of the heat actually utilized to the total heat
produced electrically. Consider the case of the electric kettle used for
boiling water. Out of the total heat produced (i) some goes to heat the
apparatus itself i.e. kettle (ii) some is lost by radiation and convection etc. James Joule*
and (iii) the rest is utilized for heating the water. Out of these, the heat
utilized for useful purpose is that in (iii). Hence, thermal efficiency of this
electric apparatus is the ratio of the heat utilized for heating the water to the total heat produced.

Hence, the relation between heat produced electrically and heat
absorbed usefully becomes
Vit

3 Xn = ms 6, -9,) \L
= |

Example 3.1. The heater element of an electric kettle has a con- f
stant resistance of 100 Qand the applied voltage is 250 V. Calculate  Fin -
the time taken to raise the temperature of one litre of water from 15°C g z L
to 90°C assuming that 85% of the power input to the kettle is usefully *
employed. If the water equivalent of the kettle is 100 g, find how long

will it take to raise a second litre of water through the same tempera- \w

ture range immediately after the first. In an electric kettle, electric

(Electrical Engineering, Calcutta Univ.) ©Neroy's Cg:;fé;ed fiiclea:

*  James Joule was born in Salford, England, in 1818. He was a physicist who is credited with discovering the
law of conservation of energy. Joule’s name is used to describe the international unit of energy known as
the joule.
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1000g = 1kg (-1 cm® weight 1 gram)
1x (90 -15) =75 kcal
Heat taken by the kettle 0.1 x (90 —15) = 7.5 kcal
Total heat taken 75+75 =82.5keal
Heat produced electrically H = I’Rt/J keal
Now, | = 250/100 = 2/5 A, J = 4,200 J/kcal; H = 2.5% x 100 x t/4200 kcal
Heat actually utilized for heating one litre of water and kettle
= 0.85x 2.5”x 100 x /4,200 kcal

Solution. Mass of water
Heat taken by water

0.85%x6.25x100xt
4,200
In the second case, heat would be required only for heating the water because kettle would be
already hot.

= 825 .. t=10 min 52 second

_ 0.85x6.25x100xt .
75 = 2,200 -~ t=9 min 53 second
Example 3.2. Two heater A and B are in parallel across supply voltage V. Heater A produces
500 kcal in 200 min. and B produces 1000 kcal in 10 min. The resistance of A is 10 ohnm. What is the

resistance of B ? If the same heaters are connected in series across the voltage V, how much heat will

be prduced in kcal in 5 min ? (Elect. Science - 11, Allahabad Univ. 1992)
2
Solution. Heat produced = % kcal
_ V2x(20% 60) .
For heater A, 500 = 10xJ (1)
2
For heater B, 1000 = %)?JXGO) (i)

From Eq. (i) and (ii), we get, R= 2.5 Q

(9)
In this a, b, and c are heaters which convert electric energy into heat; and d is the electric bulb which coverts
electric energy into light and heat
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When the two heaters are connected in series, let H be the amount of heat produced in kcal.
Since combined resistance is (10 + 2.5) = 12.5 Q, hence
Vix (5% 60)

125% ] (i)

Dividing Eq. (iii) by Eq. (i), we have H =100 kcal.

Example 3.3. An electric kettle needs six minutes to boil 2 kg of water from the initial tempera-
ture of 20°C. The cost of electrical energy required for this operation is 12 paise, the rate being
40 paise per kWh. Find the kW-rating and the overall efficiency of the kettle.

(F.Y. Engg. Pune Univ.)

H =

12 paise
40 paise/kWh

energy inkWh 03 _
Time in hours ~ (6/60) 3kw

Hence, the power rating of the electric kettle is 3 kW
Energy utilised in heating the water

=mst=2x 1x (100 —20) = 160 kcal = 160 /860 kwWh = 0.186 kWh.
Efficiency = output/input = 0.186/0.3 = 0.62 = 62%.

Solution. Input energy to the kettle = =0.3kWh

Input power =

3.4. S.1. Units

1. Mass. It is quantity of matter contained in a body.
Unit of mass is kilogram (kg). Other multiples commonly used are :
1 quintal = 100 kg, 1 tonne = 10 quintals = 1000 kg
2. Force. Unit of force is newton (N). Its definition may be obtained from Newton’s Second
Law of Motion i.e. F = ma.
Ifm=1kg;a= 1m/s?, then F = 1 newton.
Hence, one newton is that force which can give an acceleration of 1 m/s® to a mass of 1 kg.
Gravitational unit of force is kilogram-weight (kg-wt). It may be defined as follows :
or
It is the force which can impart an acceleration of 9.8 m/s® to a mass of 1 kg.

It is the force which can impart an acceleration of 1 m/s® to a mass of 9.8 kg.

Obviously, 1kg-wt. = 9.8 N
3. Weight. Itis the force with which earth pulls a body downwards. Obviously, its units are the
same as for force.

(a) Unit of weight is newton (N)

(b) Gravitational unit of weight is kg-wt.*

Note. If a body has a mass of m kg, then its weight, W = mg newtons = 9.8 newtons.

4. Work, If a force F moves a body through a distance S in its direction of application, then
Work done W = Fx S

(a) Unit of work is joule (J).

If, in the above equation, F =1 N : S=1m ; then work done = 1 m.N or joule.

Hence, one joule is the work done when a force of 1 N moves a body through a distance of 1 m

in the direction of its application.
(b) Gravitational unit of work is m-kg. wt or m-kg**.

*  Often it is referred to as a force of 1 kg, the word ‘wt’ being omitted. To avoid confusion with mass of
1 kg, the force of 1 kg is written in engineering literature as kgf instead of kg. wt.

**  Generally the work ‘wt’ is omitted and the unit is simply written as m-kg.
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If F=1Kkg-wt; S=1m;then W.D. =1 m-kg. Wt =1 m-kg.
Hence, one m-kg is the work done by a force of one kg-wt when applied over a distance of one
metre.

Obviously, 1 m-kg =9.8 m-N or J.
5. Power. ltisthe rate of doing work. Its units is watt (W) which represents 1 joule per second.
1W = 1J/s
If a force of F newton moves a body with a velocity of v m./s then
power = Fx vwatt
If the velocity v is in km/s, then
power = Fx vkilowatt
6. Kilowatt-hour (kWh) and kilocalorie (kcal)

1 kwh = 1000 x 1% % 36005=36x 10°J

1kcal =4,186J) .. 1kWh=236x 105/4, 186 = 860 kcal
7. Miscellaneous Units

(i) 1 watt hour (Wh) = 1%>< 3600s =36001J

(if) 1 horse power (metric) = 75 m-kg/s = 75 x 9.8 = 735.5 J/s or watt
(iii) 1 kilowatt (kW) = 1000 W and 1 megawatt (MW) = 10° W

3.5. Calculation of Kilo-watt Power of a Hydroelectric Station

Let Q = water discharge rate in cubic metres/second (m3/s), H = net water head in metre (m).
g = 9.81, n; overall efficiency of the hydroelectric station expressed as a fraction.

Since 1 m® of water weighs 1000 kg., discharge rate is 1000 Q kg/s.
When this amount of water falls through a height of H metre, then energy or work available per
second or available power is

= 1000 QgH J/s or W =QgH kwW
Since the overall station efficiency is n power actually available is = 9.81 nQH kW.

Example 3.4. A de-icing equipment fitted to a radio aerial consists of a length of a resistance
wire so arranged that when a current is passed through it, parts of the aerial become warm. The
resistance wire dissipates 1250 W when 50 V is maintained across its ends. It is connected to a d.c.
supply by 100 metres of this copper wire, each conductor of which has resistance of 0.006 €/m.

Calculate

(a) the current in the resistance wire

(b) the power lost in the copper connecting wire

(c) the supply voltage required to maintain 50 V across the heater itself.

Solution. (a) Current = wattage/voltage = 1250/50 =25 A

(b) Resistance of one copper conductor = 0.006 x 100=0.6 Q

Resistance of both copper conductors = 06x2=12Q

Power loss = 1"Rwatts =252 x 1.2 =750 W

(c) \oltage drop over connecting copper wire = IRvolt=25%x 1.2=30V
Supply voltage required = 50+30=80V

Example 3.5. A factory has a 240-V supply from which the following loads are taken :
Lighting : Three hundred 150-W, four hundred 100 W and five hundred 60-W lamps
Heating : 100 kW

Motors  : Atotal of 44.76 kW (60 b.h.p.) with an average efficiency of 75 percent
Misc. . Various load taking a current of 40 A.
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Assuming that the lighting load is on for a period of 4 hours/day, the heating for 10 hours per
day and the remainder for 2 hours/day, calculate the weekly consumption of the factory in kWh when

working on a 5-day week.

What current is taken when the lighting load only is

switched on ?

Solution. The power consumed by each load can be

tabulated as given below :

Power consumed

Lighting 300x 150 =
400x 100 =

500x 60 =

Heating =
Motors =
Misc. =

45,000 = 45 kW

40,000 = 40 kW

30,000 =_30 kw A factory needs electric power for lighting
B y ic power for lighti

Total = 115kwW and running motors

100 kW

44.76/0.75 = 59.7 kW
240 x 40/1000 = 9.6 kW

Similarly, the energy consumed/day can be tabulated as follows :
Energy consumed / day

Lighting = 115kWx 4hr = 460 kWh

Heating = 100kWx 10hr = 1,000 kWh

Motors = 59.7kWx 2hr = 119.4 kWh

Misc. = 96kWx 2hr = 19.2 kWh

Total daily consumption = 1,598.6 kWh

Weekly consumption = 1,598.6 x 5=7,993 kWh
Current taken by the lighting load alone = 115x 1000/240 =479 A

Example 3.6. A Diesel-electric generating set supplies an

output of 25 kW. The calorific value of the fuel oil used is 12,500
kcall/kg. If the overall efficiency of the unit is 35% (a) calculate
the mass of oil required per hour (b) the electric energy generated

per tonne of the fuel.

Solution. Output = 25 kW, Overall n= 0.35,

Input = 25/0.35 = 71.4 kW

input per hour =71.4 kWh = 71.4 x 860 = 61,400 kcal
Since 1 kg of fuel-oil produces 12,500 kcal

(a) ..mass of oil required =61,400/12,500 = 4.91 kg Diesel electric generator set

(b) 1 tonne of fuel
Heat content

Overall n= 0.35% ..energy output

= 1000 kg

= 1000 x 12,500 = 12.5 x 10° kcal
12.5 x 10%/860 = 14,530 KWh
14,530 x 0.35 = 5,088 kWh

Example 3.7. The effective water head for a 100 MW station is 220 metres. The station supplies
full load for 12 hours a day. If the overall efficiency of the station is 86.4%, find the volume of water

used.

Solution. Energy supplied in 12 hours =100 x 12 = 1200 MWh

12x 10°kWh=12x 10°x 3°x 10°J=43.2x 10"

Overall n=86.4% = 0.864 .. Energy input = 43.2 x 10"/0.864 = 5 x 10"
Suppose m kg is the mass of water used in 12 hours, then m x 9.81 >< 220=5x 10™

m

Vqume of water

5x 10'%/9.81 x 220 =23.17 x 10 kg
23.17x 10%10°=23.17x 10° m®
(- 1m® of water weighs 10° kg)
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Example 3.8. Calculate the current required by a 1,500 volts d.c. locomotive when drawing
100 tonne load at 45 km.p.h. with a tractive resistance of 5 kg/tonne along (a) level track
(b) a gradient of 1 in 50. Assume a motor efficiency of 90 percent.

Solution. Asshown in Fig. 3.1 (a), in this case, force required is equal to the tractive resistance
only.

(a) Force required at the rate of 5 kg-wt/tonne = 100 x 5 kg-wt. =500 x 9.81 =4905 N

Distance travelled/second = 45x 1000/3600 = 12.5 m/s

Power output of the locomotive = 4905 x 12.5 J/s or watt = 61,312 W

n=0.9 .. Power input = 61,312/0.9 = 68,125 W

Currnet drawn = 68,125/1500 = 45.41 A

—

ONO

)
N
v
(a) (b) W
Fig. 3.1

(b) When the load is drawn along the gradient [Fig. 3.1 (b)], component of the weight acting
downwards = 100 x 1/50 = 2 tonne-wt = 2000 kg-wt = 2000 x 9.81 = 19,620 N

Total force required = 19,620 + 4,905 = 24,525 N
Power output = force x velocity = 24,525 x 12.5 watt

. _ i _ 24,525x125 _
Power input = 24,525 x 12.5/0.9 W ; Current drawn = T0.9x1500 227 A

Example 3.9. A room measures 4 m x 7 mx 5 m and the air in it has to be always kept 15°C
higher than that of the incoming air. The air inside has to be renewed every 35 minutes. Neglecting
radiation loss, calculate the rating of the heater suitable for this purpose. Take specific heat of air as
0.24 and density as 1.27 kg/m3.

Solution. Volume of air to be changed per second =4 x 7 x 5/35=60 = 1/15 m?

Mass of air to be changed/second = (1/15) x 1.27 kg

Heat required/second = mass/second x sp. heat x rise in temp.

(1.27/15) x 0.24 x 15 kcal/s = 0.305 kcal/s
0.305 x 4186 J/s = 1277 watt.

Example 3.10. A motor is being self-started against a resisting torque of 60 N-m and at each

start, the engine is cranked at 75 r.p.m. for 8 seconds. For each start, energy is drawn from a lead-

acid battery. If the battery has the capacity of 100 Wh, calculate the number of starts that can be
made with such a battery. Assume an overall efficiency of the motor and gears as 25%.

(Principles of Elect. Engg.-I, Jadavpur Univ.)
Solution. Angular speed o= 2r N/60 rad/s =2n x 75/60 = 7.85 rad/s
Power required for rotating the engine at this angular speed is
P =torque x angular speed = o watt =60 x 7.85=471W
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Energy required per startis = power x time per start =471 x 8 = 3,768 watt-s = 3,768 J
= 3,768/3600 = 1.047 Wh

Energy drawn from the battery taking into consideration the efficiency of the motor and gearing
= 1.047/0.25 = 4.188 Wh

No. of start possible with a fully-charged battery = 100/4.188 = 24 (approx.)

Example 3.11. Find the amount of electrical energy expended in raising the temperature of
45 litres of water by 75°C. To what height could a weight of 5 tonnes be raised with the expenditure
of the same energy ? Assume efficiencies of the heating equipment and lifting equipment to be 90%
and 70% respectively. (Elect. Engg. A.M. Ae. S.1.)

Solution. Mass of water heated = 45 kg. Heat required =45 x 75 = 3,375 kcal

Heat produced electrically = 3,375/0.9 = 3,750 kcal. Now, 1 kcal = 4,186 J
electrical energy expended = 3,750 x 4,186 J

Energy available for lifting the load is = 0.7 x 3,750 x 4,186 J

If h metre is the height through which the load of 5 tonnes can be lifted, then potential energy of
the load = mgh joules =5 x 1000 x 9.81 h joules

o 5000 x 9.81x h=0.7x 3,750 x 4,186 .. h =224 metres
Example 3.12. An hydro-electric station has a turbine of efficiency 86% and a generator of

efficiency 92%. The effective head of water is 150 m. Calculate the volume of water used when
delivering a load of 40 MW for 6 hours. Water weighs 1000 kg/m

Solution. Energy output = 40 x 6 =240 MWh
= 240x 10°x 36 10°=864x 10°J
864 x10°

Overall n=0.86 x 0.92 .. Energy input = =10.92x 10"

0.86x0.92
Since the head is 150 m and 1 m® of water weighs 1000 kg, energy contributed by each m® of
water = 150 x 1000 m-kg (wt) =150 x 1000 x 9.81J=147.2 x 10*J

11
Volume of water for the required energy = M =74.18x% 10°m®

147.2x10
Example 3.13. An hydroelectric generating station is supplied form a reservoir of capacity 6 million m’at
a head of 170 m.
(i) What is the available energy in kWh if the hydraulic efficiency be 0.8 and the electrical
efficiency 0.9 ?
(if) Find the fall in reserv0|r level after a load of 12,000 kW has been supplied for 3 hours, the
area of the reservoir is 2.5 km?.
(iii) If the reservoir is supplied by a river at the rate of 1.2 m®/s, what does this flow represent in
kW and kWh/day ? Assume constant head and efficiency.

Water weighs 1 tonne/m®. (Elect. Engineering-1, Osmania Univ.)
Solution. (i) Wt. of water W = 6x 10°x 1000 kgwt=6x 10°x 9.81 N
Water head 170 m

Potential energy stored in this much water
Wh=6x 10°x 9.81x 170J=10"]

Overall efficiency of the station = 0.8x 0.9=0.71
energy available = 0.72x 10" J=72x 10*/36 x 10°
= 2x 10°kWh

(if) Energy supplied 12,000 x 3 = 36,000 kWh
Energy drawn from the reservoir after taking into con5|derat|on the overall efficiency of the
station = 36, 000/0 72=5x 10 kwWh
= 5x 10*x 36x 10°=18x 10"°J
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If m kg is the mass of water used in two hours, then, since water head is 170 m
mgh = 18x 10"
or mx 9.81x 170 = 18x 10 .. m=1.08x 10%kg
If h metre is the fall in water level, then
hx areax density = mass of water

hx (2.5x 10% x 1000 = 1.08 x 10° .. h=0.0432 m = 4.32 cm

(iii) Mass of water stored per second = 1.2 x 1000 = 1200 kg
Wt. of water stored per second 1200 x 9.81 N
Power stored 1200 x 9.81 x 170 J/s = 2,000 KW
Power actually available = 2,000 x 0.72 = 1440 kW
Energy delivered /day = 1440 x 24 = 34,560 kWh

Example 3.14. The reservoir for a hydro-electric ;gl
station is 230 m above the turbine house The annual
replenishment of the reservoir is 45 x 10" kg. What is
the energy available at the generating station bus-bars if
the loss of head in the hydraulic system is 30 m and the
overall efficiency of the station is 85%. Also, calculate
the diameter of the steel pipes needed if a maximum de-
mand of 45 MW is to be supplied using two pipes.

(Power System, Allahabad Univ.)

Solution. Actual head available = 230 =30 = 200 m

Energy available at the turbine house = mgh
45x 10" x 9.81x 200 =88.29x 10™]

13
= 8829x10 5452 10 kwh
36x10
Overall n = 0.85
: Energy output = 24.52 x 10" x 0.85=20.84 x 10’ kWh
The kinetic energy of water is just equal to its loss of potential energy.

Hydroelectric generators

%mv =mgh v = 2gh=2x9.81x200 =62.65m/s
Power available from a mass of m kg when it flows with a velocity of v m/s is
P = %mvz: %x mx 62.65°J/s or W

Equating this to the maximum demand on the station, we get
%m 62.65° = 45x 10° .. m = 22,930 kg/s
If Ais the total area of the pipesin m?, then the flow of water is Av m%/s. Mass of water flowing/

second = Avx 10° kg (- 1 m® of water = 1000 kg)
Ax vx 10°=22,930 or A= —22930 ¢ 366 2
62.65x10

If “d” is the diameter of each pipe, then nd?/4=0.183 . d=0.4826 m

Example 3.15. A large hydel power station has a head of 324 m and an average flow of 1370
cubic metres/sec. The reservoir is a lake covering an area of 6400 sqg. km, Assuming an efficiency of
90% for the turbine and 95% for the generator, calculate

(i) the available electric power ;

(ii) the number of days this power could be supplied for a drop in water level by 1 metre.
(AMIE Sec. B Power System | (E-6) Winter)
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Solution. (i) Available power =9.81 nQH kW = (0.9 x 0.95) x 1370 x 324 = 379, 524 kW =
379.52 MW.

(i) If A is the lake area in m® and h metre is the fall in water level, the volume of water used is
=Ax h=m’. Thetime requwed to discharge this Water is Ah / Q second.

Now, A= 6400>< 10°m?:h=1m: Q= 1370m /s.

.. t=6400x 10°x 1/1370 4.67 x 10° second = 540686 days

Example 3.16. The reservoir area of a hydro-electric generat-
ing plant is spread over an area of 4 sq km with a storage capacity of
8 million cubic-metres. The net head of water available to the tur-
bine is 70 metres. Assuming an efficiency of 0.87 and 0.93 for water
turbine and generator respectively, calculate the electrical energy
generated by the plant. F

Estimate the difference in water level if a load of 30 MW is
continuously supplied by the generator for 6 hours.

(Power System I-AMIE Sec. B) ! a hydel plant, potential energy
of water is converted into kinetic

Solution. Since 1 cubic metre of water weighs 1000 Kkg., the energy and then into electricity.
reservoir capacity = 8 x 10°m®=8x 10°x 1000 kg. =8x 10° kg.
Wt. of water, W = 8 x 10° kg. Wt. 8 x 10°x 9.81 =78.48 x 10° N. Net water head = 70 m.
Potential energy stored in this much water = Wh = 78.48 x 10° x 70 =549.36 x 10"°]
Overall efficiency of the generating pIant =0.87x 0.93= 0 809
Energy available = 0.809 x 549.36 x 100 =444.4x 10"
= 444.4% 10™/36 x 10°=12.34x 10°kWh
Energy supplied in 6 hours =30 MW x 6 h = 180 MWh
= 180,000 kWh
Energy drawn from the reservoir after taking into con5|derat|0n the overall efficiency of the
station = 180,000/0.809 = 224,500 kWh = 224,500 x 36 x 10°

= 80.8x 10°]
If mkg. isthe mass of water used in 6 hours, then smce water head is 70 m,
mgh = 80.8 x 10 or mx 9.81x 70=80.8x 10" - m=1.176x 10° kg.

If his the fall in Water level, then h x area X den5|ty mass of water
hx (4% 10% x 1000=1.176 x 10° .. h=0.294m = 29.4 cm.

Example 3 17. A proposed hydro-electric station has an available head of 30 m, catchment
area of 50 x 10° sg.m, the rainfall for which is 120 cm per annum. If 70% of the total rainfall can be
collected, calculate the power that could be generated. Assume the following efficiencies : Penstock
95%, Turbine 80% and Generator 85. (Elect. Engg. AMIETE Sec. A Part I1)

Solution. Volume of water available = 0.7(50 x 10° x 12)=42x 10'm®

Mass of water available = 4.2 x 10’ x 1000 = 4.2 x 10 kg

This quantity of water is available for a period of one year. Hence, quantity available per second
=4.2x 10'%/365 x 24 x 3600 =1.33x 10°.

Available head =30 m

Potential energy available = mgh =1.33x 10> x 9.8 x 30 =391 x 10%J

Since this energy is available per second, hence power available is =391 x 10°J/s=391x 10°W
=391 kW

Overall efficiency =0.95 x 0.80 x 0.85=0.646

The power that could be generated = 391 x 0.646 = 253 kKW.

Example 3.18. In a hydro-electric generating station, the mean head (i.e. the difference of
height between the mean level of the water in the lake and the generating station) is 400 metres. If
the overall efficiency of the generating stations is 70%, how many litres of water are required to
generate 1 kWh of electrical energy ? Take one litre of water to have a mass of 1 kg.

(F.Y. Engg. Pune Univ.)
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Solution. Output energy = 1 kWh =36 x 10°J
Input energy = 36 x 10°/0.7 =5.14 x 10°J

If m kg. water is required, then

mgh =5.14 x 10%or m x 9.81 x 400 =5.14 x 10°, .= 1310 kg.

Example 3.19. A 3-tonne electric-motor-operated vehicle is being driven at a speed of 24 km/hr
upon an incline of 1 in 20. The tractive resistance may be taken as 20 kg per tonne. Assuming a motor
efficiency of 85% and the mechanical efficiency between the motor and road wheels of 80%, calculate

(a) the output of the motor

(b) the current taken by motor if it gets power from a 220-V source.

Calculate also the cost of energy for a run of 48 km, taking energy charge as 40 paise/kWh.

Solution. Different forces acting on the vehicle are shown in Fig. 3.2.

Wt. of the vehicle = 3x 10° = 3000 kg-wt
. W(ttomponent of the weight of the vehicle acting downwards along the slope = 3000 x 1/20 = 150
’ Tractive resistance
Total downward force

3% 20 =60 kg-wt

150 + 60 = 210 kg-wt
210x 9.81=2,060N
24,000/3600 = 20/3 m/s
2,060 x 20/3 watt

Distance travelled/second
Output at road wheels

Mechanical efficiency = 80% or 0.8
_ 2,060x20 _ i
(@) Motor output = 308 - 17,167 W Fig. 3.2
(b) Motor input = 17,167/0.85 = 20,200 W
Currentdrawn 20,200/220 =91.7 A

Motor power input
Time for 48 km run
Motor energy input = 20.2x 2 =40.4 kW

Cost = Rs.40.4x 0.4 =Rs. 16 paise 16

Example 3.20. Estimate the rating of an induction furnace to melt two tonnes of zinc in one
hour if it operates at an efficiency of 70%. Specific heat of zinc is 0.1. Latent heat of fusion of zinc
is 26.67 kcal per kg. Melting point is 455°C. Assume the initial temperature to be 25°C.

(Electric Drives and Utilization Punjab Univ.)

Solution. Heat required to bring 2000 kg of zinc from 25°C to the melting temperature of
455° C = 2000 x 0.1 x (455 -25) = 86,000 kcal.
Heat of fusion or melting mL =2000 x 26.67 = 53,340 kcal
Total heat reqd. 86,000 + 53,340 = 139,340 kcal
Furnace input = 139,340/0.7 = 199,057 kcal

Now, 860 kcal 1 kWh ... furnace input = 199.057/860 = 231.5 kWh.
Power rating of furnace = energy input/time = 231.5 kWh/1 h = 231.5 kW.

Example 3.21. A pump driven by an electric motor lifts 1.5 m® of water per minute to a height
of 40 m. The pump has an efficiency of 90% and motor has an efficiency of 85%. Determine : (a) the
power input to the motor. (b) The current taken from 480 V supply. (c) The electric energy consumed
when motor runs at this load for 4 hours. Assume mass of 1 m® of water to be 1000 kg.

20,200 W = 20.2 kW
2 hr.

(Elect. Engg. Pune Univ.)

Solution. (a) Weight of the water lifted = 1.5 m® = 1.5 x 1000 = 1500 kg. Wt = 1500 x 9.8 =
14700 N.

Height =40 m; time taken =1 min. =60 s
Motor output power = 14700 x 40/60 = 9800 W
Combined pump and motor efficiency = 0.9 x 0.85
Motor power input = 9800/0.9 x 0.85 = 12810 W = 12.81 k\W.
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(b) Current drawn by the motor = 12810/480 = 26.7 A
Electrical energy consumed by the motor =12.81 kW x 4 h =51.2 kWh.

Example 3.22. An electric lift is required to raise a load of 5 tonne through a height of 30 m.
One quarter of electrical energy supplied to the lift is lost in the motor and gearing. Calculate the
energy in kWhr supplied. If the time required to raise the load is 27 minutes, find the kW rating of the
motor and the current taken by the motor, the supply voltage being 230 V d.c. Assume the efficiency
of the motor at 90%. (Elect. Engg. A.M. Ae. S.1. June)

Solution. Work done by the lift = Wh = mgh = (5 x 1000) x 9.8 x 30 =1.47 x 10°)
Since 25% of the electric current input is wasted, the energy supplied to the lift is 75% of the
input.
- input energy to the lift = 1.47 x 10%/0.75=1.96 x 10°J
Now, 1kWh = 26 x 10°J
-, energy input to the lift = 1.96 x 10%/36 x 10° = 0.544 KWh
Motor energy output = 1.96 x 10°J; n=0.9
Motor energy input = 1.96 x 10°/0.9 = 2.18 x 10°J : time taken = 27 x 60 = 1620 second
Power rating of the electric motor = work done/time taken
2.18 x 10°/1620 = 1.345 x 10° J/s = 1345 W
1345/230 =5.85 A

Example 3.23. An electrical lift make 12 double journey per hour. A load of 5 tonnes is raised
by it through a height 50 m and it returns empty. The lift takes 65 seconds to go up and 48 seconds to
return. The weight of the cage is 1/2 tonne and that of the counterweight is 2.5 tonne. The efficiency
of the hoist is 80 per cent that of the motor is 85 %. Calculate the hourly consumption in kWh.

(Elect. Engg. Pune Univ.)

Current taken by the motor

Solution. The lift is shown in Fig. 3.3.
Weight raised during upward journey
= 5+ 1/2 -2.5 = 3 tonne = 3000 kg-wt
Distance travelled = 50 m
Work done during upward journey
= 3000 x 50=15x 10* m-kg
Weight raised during downward journey
= 2.5-0.5=2 tonne = 2000 kg
Similarly, work done during downward journey
= 2000 x 50 =10 x 10* m-kg.
Total work done per double journey
= 15x 10*+10x 10* =25 x 10* m-kg
Now, 1,m-kg = 9.8 joules
: Work done per double journey
No. of double journey made per hour
work done per hour
Energy drawn from supply
Now, 1 kWh
: Energy consumption per hour

9.8x 25x 10%J=245x 10*J

12

12 x 245x 10°=294x 10°J

294 x 10°/0.8 x 0.85=1432.3%10°J
36x 10°J

432.3 x 10%36 x 10° =12 kWh

Example 3.24. An electric hoist makes 10 double journey per hour. In each journey, a load of
6 tonnes is raised to a height of 60 meters in 90 seconds. The hoist cage weighs 1/2 tonne and has a
balance load of 3 tonnes. The efficiency of the hoist is 80 % and of the driving motor 88 %. Calcu-
late (a) electric energy absorbed per double journey (b) hourly energy consumption in kWh (c) hp
(British) rating of the motor required (d) cost of electric energy if hoist works for 4 hours/day for 30
days. Cost per kWh is 50 paise. (Elect. Power - 1, Bangalore Univ.)
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1
63

tonne-wt.

Force exerted on upward journey 6% 3= 3% tonne-wt.

- 3%><1000 = 3,500 kg-wt.

Force exerted on downward journey 3- % = 2% tonnes-wt. = 2500 kg-wt

Distance moved = 60m
Work done during upward journey 3,500 x 60 m-kg
Work done during downward journey 2,500 x 60 m-kg
Work done during each double journey (3,500 + 2,500) x 60 = 36 x 10* m-kg
= 36x 10"x 9.81=534x 10*]
0.80x 0.88
534 % 10*/0.8 x 0.88 =505 x 104]

Overall n
Energy input per double journey

(a) Electric energy absorbed per double j Journey = 505x 10%36 x 10°=1.402 kWh

(b)
(©)

Hourly consumption = 1.402 x 10=14.02 kWh
Before calculating the rating of the motor, maximum rate of working should be found. Itis

seen that maximum rate of working is required in the upward journey.

(d)

Work done = 3,500 x 60x 9.81 =206 x 10*J
Time taken = 90 second
_206x10* »
B.H.P of motor = 90%08x746 =38.6(British h.p.)

Cost=14.02x (30x 4)x 50/100 = Rs. 841.2

Example 3.25. A current of 80 A flows for 1 hr, in a resistance across which there is a voltage
of 2 V. Determine the velocity with which a weight of 1 tonne must move in order that its kinetic
energy shall be equal to the energy dissipated in the resistance.

(Elect. Engg. AM.Ae. S.1.)

Solution. Energy dissipated in the resistance =V It =2 x 80 x 3600 = 576,000 J
A weight of one tonne represents a mass of one tonne i.e., 1000 kg. Its kinetic energy is = (1/2)

x 1000 x v° =500 v°

500 v* = 576,000 .. v = 1152 ml/s.

Tutorial Problems No. 3.1

A heater is required to give 900 cal/min on a 100 V. d.c. circuit. What length of wire is required for
this heater if its resistance is 3 Q per metre ? [53 metres]
A coil of resistance 100 Q is immersed in a vessel containing 500 gram of water of 16° C and is
connected to a 220-V electric supply. Calculate the time required to boil away all the water (1kcal =
4200 joules, latent heat of steam = 536 keal/kg). [44 min 50 second]
Avresistor, immersed in oil, has 62.5 Qresistance and is connected to a 500-V d.c. supply. Calculate
(a) the current taken
(b) the power in watts which expresses the rate of transfer of energy to the oil.
(c) the kilowatt-hours of energy taken into the oil in 48 minutes. [8A ; 4000 W ; 3.2 kWh]
An electric kettle is marked 500-W, 230 V and is found to take 15 minutes to raise 1 kg of water from
15° C to boiling point. Calculate the percentage of energy which is employed in heating the water.
[79 per cent]
An aluminium kettle weighing 2 kg holds 2 litres of water and its heater element consumes a power
of 2 kW. If 40 percent of the heat supplied is wasted, find the time taken to bring the kettle of water
to boiling point from an initial temperature of 20°C. (Specific heat of aluminium = 0.2 and Joule’s
equivalent = 4200 J/kcal.) [11.2 min]
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A small electrically heated drying oven has two independent heating elements each of 1000 Qin its
heating unit. Switching is provided so that the oven temperature can be altered by rearranging the
resistor connections. How many different heating positions can be obtained and what is the electri-
cal power drawn in each arrangement from a 200 V battery of negligible resistance ?
[Three, 40, 20 and 80 W]
Ten electric heaters, each taking 200 W were used to dry out on site an electric machine which had
been exposed to a water spray. They were used for 60 hours on a 240 V supply at a cost of twenty
paise/kWh. Calculate the values of following quantities involved :
(@) current (b) powerinkW (c) energy in kWh (d) cost of energy.
[(a) 8.33 A (b) 2 kW (c) 120 kWh (d) Rs. 24]
An electric furnace smelts 1000 kg of tin per hour. If the furnace takes 50 kW of power from the
electric supply, calculate its efficiency, given : the smelting tempt. of tin = 235°C ; latent heat of
fusion = 13.31 kcal/kg; initial temperature = 15°C ; specific heat = 0.056. Take J = 4200 J/kcal.
[59.8%] (Electrical Engg.-1, Delhi Univ.)
Find the useful rating of a tin-smelting furnace in order to smelt 50 kg of tin per hour. Given :
Smelting temperature of tin = 235°C, Specific heat of tin = 0.055 kcal/kg-K. Latent heat of liquefaction
=13.31 kcal per kg. Take initial temperature of metal as 15°C. [1.5 kW]

(FY. Engg. Pune Univ.)

10. State the relation between
(i) Kcal and kWh (ii) Horse power and watts (iii) kWh and joule (watt sec) (iv) K.E and joules.
(Gujrat University, Summer 2003)
11. The electrical load in a small workshop consists of 14 lamps, each rated at 240 V, 60 W and 3
fans each rated at 240 V, 1 kW. What is the effective resistance of the total load, total current
and energy utilised if run for 8 hrs.
(Pune University 2003) (Gujrat University, Summer 2003)
OBJECTIVE TESTS -3
1. Ifa 220 V heater is used on 110 V supply, (c) 3600W (d) 4186
heat produced by it will be —— as much. 6. A force of 10,000 N accelerates a body to a
(@) one-half (b) twice velocity 0.1 km/s. This power developed is
(c) one-fourth (d) four times —kw
2. For agiven line voltage, four heating coils () 1,00,000 (b) 36,000
will produce maximum heat when connected (c) 3600 (d) 1000
(@) allin parallel (b) all in series 7. A100 W light bulb burns on an average of
(c) with two parallel pairs in series 10 hours a day for one week. The weekly
(d) one pair in parallel with the other two consumption of energy will be — unit/s
in series (@ 7 (b) 70
3. Theelectric energy required to raise the tem- (c) 07 (d) 0.07
perature of a given amount of water is 1000 (Principles of Elect. Engg.
kWh. If heat losses are 25%, the total heat- Delhi Univ.)
ing energy required is — kWh. . Two heaters, rated at 1000 W, 250 volts each,
(a) 1500 (b) 1250 are connected in series across a 250 \olts
(c) 1333 (d) 1000 50 Hz A.C. mains. The total power drawn
4. One kWh of energy equals nearly from the supply would be watt.,
(a) 1000 W (b) 860 kcal (a) 1000 (b) 500
(c) 418617 (d) 7355 W (c) 250 (d) 2000
5. One kWh of electric energy equals (Principles of Elect. Engg.
(a) 360017 (b) 860 kcal Delhi Univ.)
ANSWERS

l.c 22a3.c4bb5b6d7a8b
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4.1. Static Electricity

In the preceding chapters, we concerned ourselves exclusively with electric current i.e. electric-
ity in motion. Now, we will discuss the behaviour of static electricity and the laws governing it. In
fact, electrostatics is that branch of science which deals with the phenomena associated with electric-
ity at rest.

It has been already discussed that generally an atom is electrically neutral i.e. in a normal atom
the aggregate of positive charge of protons is exactly equal to the aggregate of negative charge of the
electrons.

If, somehow, some electrons are removed from the atoms of a body, then it is left with a
preponderance of positive charge. It is then said to be positively-charged. If, on the other hand, some
electrons are added to it, negative charge out-balances the positive charge and the body is said to be
negatively charged.

In brief, we can say that positive electrification of a body results from a deficiency of the electrons
whereas negative electrification results from an excess of electrons.

The total deficiency or excess of electrons in a body is known as its charge.

4.2, Absolute and Relative Permittivity of a Medium

While discussing electrostatic phenomenon, a certain property of the
medium called its permittivity plays an important role. Every medium is
supposed to possess two permittivities :

(i) absolute permittivity (¢) and (i) relative permittivity (€,).

For measuring relative permittivity, vacuum or free space is chosen as
the reference medium. It has an absolute permittivity of 8.854 X 10" F/m

Absolute permittivity g, = 8.854x 10" F/m
Relative permittivity, e =1 et AT o
Being a ratio of two similar quantities, €, has no units. Coulomb*

Now, take any other medium. If its relative permittivity, as compared to vacuum is €, then its
absolute permittivity is e = g e, F/m
If, for example, relative permittivity of mica is 5, then, its absolute permittivity is

e = g,€,=8.854x 1072 x 5=4427x 10" F/m

4.3. Laws of Electrostatics

First Law. Like charges of electricity repel each other, whereas unlike charges attract each other.

Second Law. According to this law, the force exerted between two point charges (i) is directly
proportional to the product of their strengths (ii) is inversely proportional to the square of the distance
between them.

This law is known as Coulomb’s Law and can be expressed mathematically as :

F o< —Ql% or F=k —Ql%
d d
) - »_99 9
In vector form, the Coulomb’s law can be written as F = F2 d
_do. ;
d

Coulomb is better known for his law which states that the force between two point charges is propor-
tional to each charge and inversely proportional to the square of the distance between them.
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where é is the unit vector i.e. a vector of unit length in the /

L . d - . )
direction of distance d, i.e. d = — (where 4 is the vector notation

for d, which is a scalar notation).
Therefore, explicit forms of this law are : /
A -
Fo=k _ngz din =k —Q13Q2 dia
2 > dp, Fig. 4.1

- . ho .
where f,, is the force on O, due to O, and d1» is the unit vector
in direction from Q, to O,
9.9,

7 _ Q1Q2 - : - . .
>+ da1 = k =5% d21 where F), is the force on O, due to O, and ;, is the unit
d21 21

_> p—
and Fia =k

2]
vector in the direction from O, to Q,.

where £ is the constant of proportionality, whose value depends on the system of units employed. In
S.I. system, as well as M.K.S.A. system k= 1/4re. Hence, the above equation becomes.

90, __ 00,
4 med’ 4ree.d :
If O, and Q, are in colomb, d in metre and € in fard/metre, then F'is in newtons
1

1 9 9
Now 89878 100 9 10° (approx.)
4 o 4 8854 10"

Hence, Coulomb’s Law can be written as

F = 9x10° Ql—% —in a medium

e.d
9x10° 2%
d2

—in air or vacuum ...(I)

If in Eq. (i) above

0, 0, =0 (say), d= 1 metre; F'=9 X 10°N

then Q2 =1 or Q==1 coulomb

Hence, one coulomb of charge may be defined as
that charge (or quantity of electricity) which when
placed in air (strictly vacuum) from an equal and
similar charge repels it with a force of 9 x 10° N.

Although coulomb is found to be a unit of conve-
nient size in dealing with electric current, yet, from
the standpoint of electrostatics, it is an enormous unit.
Hence, its submultiples like micro-coulomb (p C) and
micro-microcoulomb (u puC) are generally used. Unlike charges attract and like charges repel

lpCc=10°C;1ppcC=10"cC each other

It may be noted here that relative permittivity of air is one, of water 81, of paper between 2 and

3, of glass between 5 and 10 and of mica between 2.5 and 6.

000
00

Example 4.1. Calculate the electrostatic force of repulsion between two O-particles when at a
distance of 1 07 m from each other. Charge of an o-particles is 3.2 X 1 0’ c. If mass of each
particle is 6.68 X 1 0%’ N—mz/kgz.

Solution. Here O, = 0,=32x 1077 C,d=10"m
32x107"7 x3.2x107"

(10—13)2

Fo= 9%x10°x = 92x107°N
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The force of gravitational attraction between the two particles is given by
mmy  6.67x107" x (6.68 x1077)?
P (10713)2
Obviously, this force is negligible as compared to the electrostatic force between the two
particles.

=G =297x1077 N

Example 4.2. Calculate the distance of separation between two electrons (in vacuum) for which
the electric force between them is equal to the gravitation force on one of them at the earth surface.
mass of electron = 9.1 x 1! kg, charge of electron = 1.6 X 107 ¢
Solution. Gravitational force on one electron.
= mgnewton=9.1x 107" x 9.81 N
Electrostatic force between the electrons

2 9 -19\2
_ 9><109Q—2= 9x10 ><(1.26><10 ) N
d d
Equating the two forces, we have
9x10° x 2.56 x 10~°
d>
Example 4.3. (a) Three identical point charges, each QOS2 coulombs, are placed at the vertices
of an equilateral triangle 10 cm apart. Calculate the force on each charge.

(b) Two charges Q coulomb each are placed at two opposite corners of a square. What addi-
tional charge “q” placed at each of the other two corners will reduce the resultant electric force on
each of the charges Q to zero ?

=91x 10> x981 . d=508m

Solution. (a) The equilateral triangle with its three charges is shown in Fig. 4.2 (a). Consider
the charge Q respectively. These forces are equal to each other and each is

2
F = 9x10° OQT=9><10“ 0* newton

T+ ELECTRON PATH

[}
0.9cm

L—— 2.5J>c;n J

Fig. 4.2
Since the angle between these two equal forces is 60°, their resultant is

= 2x Fx cos60°2=+3 F= 9x10" x /3 Q2 Newton
The force experienced by other charges is also the same.

(b) The various charges are shown in Fig. 4.2 (b). The force experienced by the charge Q at
point C due to the charge Q at point 4 acts along ACM and is

2
~ 9x10° =2~ 45%10° 0¥d® newton (i)

(2dy

where d is the side of the square in metres.
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If the charges ¢ are negative, they will exert attractive forces on the charge Q at point C along CB
and CD respectively. Each force is

Oq

= —9x10° ? newton

Since these two forces are at right angles to each other, their resultant is

= —V2x9x 10"‘2—?
If net force on charge Q at point C is to be zero, then (i) must equal (ii),
2
45x10° % —-9x10" V2 ‘;—% *. ¢ == Q/2v/2 coulomb

Example 4.4. The small identical conducting spheres have charges of 2.0 x 10° Cand 0.5 x
10° respectively. When they are placed 4 cm apart, what is the force between them ? If they are
brought into contact and then separated by 4 cm, what is the force between them ?

(Electromagnetic Theory, A.M.LE. Sec B,)

Solution. F=9x 107 Q, Q,/d" =9 x 107 x (0.5 x 107)/0.04*=-56.25 x 107 N. When two
identical spheres are brought into contact with each other and then separated, each gets half of the
total charge. Hence,

0, = 0,=[2x 10°+(-0.5x 10°)2]=0.75x 10° C

When they are separated by 4 cm,

F = 9% 107 % (0.75 x 10%)%0.04° =0.316 x 10° N

Example 4.5. Determine resultant force on 3 pnC charge due to 4nC and 10 nC charges. All
these three point charges are placed on the vertices of equilateral triangle ABC of side 50 cm.

[Bombay University, 2001]

3ucC
l::2
&
& %, 3uC
/&
50 cm F
—4uC +10 pC
Fig. 4.3 (a) Fig. 4.3 (b)
' 99, 3 10° 10 10°
Solution. F2= g 4 884 107 050 0.50
= 1.08x 10° Newton, in the direction shown
Similarly, F, = 0.432 Newton, in the direction shown.

Resultant of | and F’, has to be found out.

Example 4.6. A capacitor is composed of 2 plates separated by a sheet of insulating material
3 mm thick and of relative permitivity 4. The distance between the plates is increased to allow the
insertion of a second sheet of 5 mm thick and of relative permitivity € . If the equivalent capacitance
is one third of the original capacitance. Find the value of €. [Bombay University, 2001]

€€, 4

Solution. G = k(4/3), where k=g dX 10"

The composite capacitor [with one dielectric of €., = 4 and other dielectric of € , as relative
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permitivity has a capacitance of C/3. Two capacitors are effectively in series. Let the second dielec-

tric contribute a capacitor of C,.
cC,  K.(473).C,

KG9 = e "k am+ G
This gives C, = 23K
Q3K = in
5x10
E, = 103.K l/e,Ax 107

= 10/3 ¢y A x 103 1/eyAx 10°
10/3 =3.33

4.4. Electric Field

It is found that in the medium around a charge a force acts on a positive or negative charge when
placed in that medium. If the charge is sufficiently large, then it may create such a huge stress as to
cause the electrical rupture of the medium, followed by the passage of an arc discharge.

3}2 ;i]:é % %Q

REPULSION

Fig. 4.4 (a) Fig. 4.4 (b)

The region in which the stress exists or in which electric forces act, is called an electric field or
electrostatic field.

The stress is represented by imaginary lines of forces. The direction of the lines of force at any
point is the direction along which a unit positive charge placed at that point would move if free to do
so. It was suggested by Faraday that the electric field should be imagined to be divided into tubes of
force containing a fixed number of lines of force. He assumed these tubes to the elastic and having
the property of contracting longitudinally the repelling laterally. With the help of these properties, it
becomes easy to explain (i) why unlike charges attract each other and try to come nearer to each other
and (ii) why like charges repel each other [Fig. 4.4 (a)].

However, it is more common to use the term lines of force. These lines are supposed to emanate
from a positive charge and end on a negative charge [Fig. 4.4 (b)]. These lines always leave or enter
a conducting surface normally.

4.5. Electrostatic Induction

It is found that when an uncharged body is brought near a charged body, it acquires some charge.
This phenomenon of an uncharged body getting charged merely by the nearness of a charged body is
known as induction. InFig. 4.5, a positively-charged body 4 is brought close to a perfectly-insulated
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uncharged body B. It is found that the end of B nearer to 4 gets negatively charged whereas further
end becomes positively charged. The negative and positive charges of B are known as induced
charges. The negative charge of B is called ‘bound’ charge because it must remain on B so long as
positive charge of 4 remains there. However, the positive charge on the farther end of B is called free
charge. In Fig. 4.6, the body B has been earthed by a wire. The positive charge flows to earth leaving
negative charge behind. If next A4_is removed, then this negative charge will also go to earth, leaving
Buncharged. It is found that :

(i) apositive charge induces a negative charge and vice-versa.
(ii) each of the induced charges is equal to the inducing charge.
++++ 4+ - +
( 4«4 H+z( B )
- 3
+

+ +[ [+ ++ =

+ + + + 4 _

(4
+ +

Fig. 4.5 Fig. 4.6

4.6. Electric Flux and Faraday VAN DE GRAFF (ELECTROSTATIC) GENERATOR

Tubes
Positive charges at & + zwoer;a;
Consider a small closed curve in an elec- many thousands o + +
. . volts * *
tric  field A 5
(Fig. 4.7). If + ¥ -
d Rotation of belt | 9%
\ye raw o oo
lines of force
+
through each . s Y/ Fulley
point of this Positively charged belt UUCE]
closed curve. strips negative charges
h ’ (electrons) from dome
then we geta iz metal comb, giving
tube . as dome a positive charge | INSulaGNg
shown in the column
i ) ; Movi t —1 prevents
Fig. 4.7 ﬁgure It 1s ga?x:?g ;L;Ziie\:ebe charges
called the - leaking away
tube of the electric flux. It may be defined as N
Positive metal comb P Negatively

the region of space enclosed within the tubu-

strips negative charges ——

1 charged

lar surface formed by drawing lines of force (electrons) from the ) metal plate

through every point of a small closed curve pelt. +

in the electric field. COEERE Pulley
Since lines of force end on conductors, positive .| heel

the two ends of a flux tube will consist of small electrical I™ Rotation

supply
area ds, and ds, on the conductor surfaces. If of belt

surface charge densities over these areas are Connection to

_ negative electrical w
o, and —G,, then charges at the two ends of S 3ol _

the flux tube will be 6, ds, and -6, ds,. These
uxtubew 0145, 245 The Van de Graff generator is able to produce very high

Charge.s are assumed to be always equal but voltages, for example, up to 50 000 volts. When someone
opposite to each other. The strength of a flux touches the dome of the generator, it will cause hair to
tube is represented by the charge at its ends. stand on end (since like charges repel). Touching the VDG

. . . . is not dangerous since the current is very small.
A unit tube of flux is one in which the ¢ y
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end charge is one unit of charge.

In the S.I. system of units, one such tube of flux is supposed to start from a positive charge of one
coulomb and terminate on a negative charge of the same amount.

A unittube of flux is known as Faraday tube. Ifthe charge on a conductoris+ O coulombs, then
the number of Faraday tubes starting or terminating on it also Q.

The number of Faraday tubes of flux passing through a surface in an electric field is called the
electric flux (or dielectric flux) through that surface. Electric flux is represented by the symbol y
Since electric flux is numerically equal to the charge, it is measured in coulombs.

Hence, y = QO coulombs

Note. It may also be noted that ‘tubes of flux’ passing per unit area through a medium are also supposed
to measure the ‘electric displacement’ of that dielectric medium. In that case, they are referred to as /ines of
displacement and are equal to € times the lines of force (Art. 4.8). It is important to differentiate between the
‘tubes of flux’ and ‘lines of force’ and to remember that if Q is the charge, then

tubes of flux = Q and lines of force = Q/e

4.7. Field Strength or Field Intensity or Electric Intensity (E)

Electric intensity at any point within an electric field may be defined in either of the following
three ways :

(a) Itis given by the force experienced by a unit positive charge placed at that point. Its direc-
tion is the direction along which the force acts.

Obviously, the unit of £ is newton/coulomb (N/C).

For example, if a charge of O coulombs placed at a particular point P within an electric field
instances a force of  newton, then electric field at that point is given by

E = F/QN/C
The value of £ within the field due to a point charge can be found with help of Coulomb’s laws.
Suppose it is required to find the electric field at a point 4 situated at a distance of d metres from a
charge of Q coulombs. Imagine a positive charge of one coulomb placed at that point (Fig. 4.8). The
force experienced by this charge is

g A
&N or F:Q—X12dPA

F = 4negd 4meg.dy,

\\%/ »
p IC
E = LN/C /I/\
d

2
4mepe.dp, . ;

in a medium

= 9x10°—Z_Nic Fig. 4.8
€ dpy
or in vector notation,
— 9 Q n — N .
E(d) = 9x10 d where E (d) denotes g as a function of d
- 2 e
4w g,d

in air
= 9x10° £ NC
d

(b) Electric intensity at a point may be defined as equal to the lines of force passing normally
through a unit cross-section at that point. Suppose, there is a charge of O coulombs. The number of
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lines of force produced by it is Q/e. If these lines fall normally on an area of 4 m’ surrounding the
point, then electric intensity at that point is

Qe _ Q0
Y
Now 0/A =D —the flux density over the area
b_D . .
E =77 E0E, —in a medium
D .
= g —in air

The unit of E is volt/metre.

(c) Electric intensity at any point in an electric field is equal to the potential gradient at that
point.
In other words, £ is equal to the rate of fall of potential in the direction of the lines of force.
—a
dx
Obviously, the unit of £ is volt/metre.

It may be noted that £ and D are vector quantities having magnitude and direction.
-

. - .
In vector notation, D = gE
Example 4.7. Point charges in air are located as follows :

+5x 10° Cat (0, 0) metres, + 4 x 10° C at (3, 0) metres and —6 x 10° C at (0, 4) metres. Find
electric field intensity at (3, 4) metres.

Solution. Electric intensity at point D (3, 4) due to positive charge at point A4 is
E, =9x 10° 0/d*=9x 10°x 5% 10%/5*=18 V/m
As shown in Fig. 4.9, it acts along AD.

Similarly, electric intensity at point D due to posi- y E, E
tive charge at point Bis £, =9 X 10°x 4% 10%/4* =225 E 1
V/m. It acts along BD. -3 o 9
E =9% 10°x 6x 10%/3>=60 V/ ~ox10C N
| = = m. It acts along DC. C E D
The resultant intensity may be found by resolving £, £, =
and Ej; into their X-and Y-components. Now, tan 0 = 4/3; 5
0=53°8". i
X-component = E, cos 6—E, =18 cos 53°8" — 60 L
= —-49.2 0 | B .
Y-component = E,sin® +E,=18sin53°8" +22.5=36.9 (0,0) | 4 . Ay 168C
E = (-49.2)* +36.9> = 61.5 V/m. +5x10°C
It acts along DE such that tan ¢ = 36.9/49.2 = 0.75. Fig. 4.9

Hence ¢ = 36.9°.

Example 4.8. An electron has a velocity of 1.5 X 10" m/s at right angles to the uniform electric
field between two parallel deflecting plates of a cathode-ray tube. If the plates are 2.5 cm long and
spaced 0.9 cm apart and p.d. between the plates is 75 V, calculate how far the electron is deflected
sideways during its movement through the electric field. Assume electronic charge to be 1.6 X 1 0"’
coulomb and electronic mass to be 9.1 x 107" kg.
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Solution. The movement of the electron _
through the electric field is shown in Fig. 4.10. ( Cathode Ray Tube (CRT)
Electric intensity between the plates is £ =
dV/dx =75/0.009 = 8,333 V/m.

Force on the electron is F = QF Phosphor-
=8,333 x 1.6x 107 =1.33x 10" N. Fooussing  Defiecion Costed

Since the deflection x is small as compared system Plates
to the length of the plates, time taken by the \
electron to travel through the electric field is |

Base

=0.025/1.5x 10’ =1.667x 1075 | , s f Electron
Connector Electron  Horizontal i Beam
+ ELECTRONPATH Pins Gun Deflection
T Plates
t L
0.9cm b
Now, force = mass X acceleration
J’— .. Transverse acceleration is
= 25cm 133%10°%
Flg 4.10 :ﬁ=l.44x1015 l'l'l/S2
T 1 x
Final transverse velocity of the electron = acceleration X time
=1.44% 10" x 1.667 x 10°=2.4x 10°m/s
.. sideways or transverse movement of the electron is
x = (average velocity) X time
= %x 2.4x 10°x 1.667x10” =2 mm (approx.)*
4.8. Electric Flux Density or Electric Displacement
It is given by the normal flux per unit area.
If a flux of ¥ coulombs passes normally through an area of 4 m?, then flux density is
D = % Chn
It is related to electric field intensity by the relation
D = gg E ...In a medium
=g,k ...in free space

In other words, the product of electric intensity £ at any point within a dielectric medium and the
absolute permittivity € (= €, €,) at the same point is called the displacement at that point.

Like electric intensity E, electric displacement D** is also a vector quantity (see 4.7) whose
direction at every point is the same as that of £ but whose magnitude is €, €, times £. As E is
represented by lines of force, similarly D may also be represented by lines called lines of electric

*  The above result could be found by using the general formula

- )

where e/m = ratio of the charge and mass of the electron
V' = p.d. between plates in volts; d = separation of the plates in metres
I = length of the plates in metres; v = axial velocity of the electron in m/s.

** A more general definition of displacement D is that D = e e, E + P where P is the polarisation of the
dielectric and is equal to the dipole moment per unit volume.
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displacement. The tangent to these lines at any point gives the direction of D at that point and the
number of lines per unit area perpendicular to their direction is numerically equal to the electric
displacement at that point. Hence, the number of lines of electric displacement per unit area (D) is €,
€, times the number of lines of force per unit area at that point.

It should be noted that whereas the value of £ depends on the permittivity of the surrounding
medium, that of D is independent of it.

One useful property of D is that its surface integral over any closed surface equals the enclosed
charge (Art. 4.9).

Let us find the value of D at a point distant » metres from a point charge of O coulombs. Imagine
a sphere of radius » metres surrounding the charge. Total flux = O coulombs and it falls normally on
a surface area of 4 /¥ metres. Hence, electric flux density.

D= iz Y coulomb/metre® or D = 0
4dnre 4dmr Adnr

Sr=r (in vector notation)

4.9. Gauss* Law

Consider a point charge Q lying at the centre of a sphere of radius » which surrounds it com-
pletely [Fig. 4.11 (a)]. The total number of tubes of flux originating from the charge is Q (but number
of lines of force is /¢ ;) and are normal to the surface of the sphere. The electric field £ which equals
Oldre, /% is also normal to the surface. As said earlier, total number of lines of force passing
perpendicularly through the whole surface of the sphere is

= EX Area= < 5 ><47tr2:2
4mer €9

aA

Fig. 4.11

Now, suppose we draw another sphere surrounding the charge [Fig. 4.11 (b)] but whose centre
does not lie at the charge but elsewhere. In this case also, the number of tubes of flux emanating from
the charge is O and lines of force is Q.€, though they are not normal to the surface. These can,
however, be split up into cos 8 components and sin 6 components. If we add up sin 8 components all
over the surface, they will be equal to zero . But if add up cos 8 components over the whole surface
of the sphere, the normal flux will again come out to be Q (or lines of force will come out to be O/g ).
Hence, it shows that irrespective of where the charge Q is placed within a closed surface completely
surrounding it, the total normal flux is Q and the total number of lines of force passing out normally
is Q/g,,.

In fact, as shown in Fig. 4.12, if there are placed charges of value Q,, O,, -0, inside a closed
surface, the total i.e. net charge enclosed by the surface is (Q, + O, —0,)/g,, through the closed
surface.

*  After the German mathematician and astronomer Karel Freidrich Gauss (1777-1855).
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This is the meaning of Gauss’s law which may be stated thus : the surface integral of the normal
component of the electric intensity £ over a closed surface is equal to 1/¢, times the total charge
inside it.

Mathematically, J E,ds= Q/e, (where the circle on the integral sign indicates that the surface of
integration is a closed surface).

or J' e, ds = O ie J D, ds =0 (D, = &,E,]
or JeoEcosﬂds =0, ie JDcosﬁdszQ
or Jeo E, cos® = Q. ie, J‘Dds cos =0

when E and D are not normal to the surface but make an angle 6 with the normal (perpendicular)
to the surface as shown in Fig. 4.13.

Proof. In Fig. 4.13, let a surface S completely surround a quantity of electricity or charge Q.
Consider a small surface area ds subtending a small solid angle dwat point charge Q. The field

intensity at ds is £ = Lz where d is the distance between Q and ds.
dre,d

. - - . - = . i
In vector notation, .[80 E.ds=Qie. J. Dds= Q= |, pdv (where p is the volume density of
charge in the volume enclosed by closed surface S).

- d . . . .
Thus J. ,D.ds= [, p dvis the vector statement of Gauss Law* and its alternative statement is

VD=p

°*+0, S

Fig. 4.12 Fig. 4.13

The normal component of the intensity £, = £ cos 0
~.No. of lines of force passing normally through the area ds is

= E,d =Edscos 6= E.ds invector notation

Now dscos® = ds s Eds = Lz ds’
4me, d
Now s id = dw
Hence, the number of lines of force passing normally is = 1 1?3 do
0

*  This results from the application of the Divergence theorem, also called the Gauss’ Theorem, viz.,

| ¢ VDdv = [ D.ds where vector operator called ‘del’ is defined as

90 9 9
V="ux+—y+—
8xx+ayy+azz
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Total number of lines of force over the whole surface

- _Q do= _Q X4mn= 2
4me, Js 4me, €,
where sign ¢ denotes integration around the whole of the closed surface i.e. surface integral.
If the surface passes through a material medium, then the above law can be generalized to include
the following :
the surface integral of the normal component of D over a closed surface equals the free
charge enclosed by the surface.

0
As before D = Q 5 . The normal component D, =D cos 6 = 4 1d? X cos 0
4med T
Hence, the normal electric flux from area ds is
dy = D,xds=—2_ cos6.ds=—2_ as
4 nd 4 nd
O (ds\_0
- = ==d
dv =Yg d? an ¢
_ (2 Y J‘ Y _
= |=.do== ==X4n = L=
or v j4ndw o dw 4nxn 0] (0]

which proves the statement made above.
Hence, we may state Gauss’s law in two slightly different ways.

J'En.ds - jE.cose.ds=Q/eo or eojEn.ds=Q
3 3 3

and an.ds _ an.ds=Q
3 3

(vector statement is given above)

4.10. The Equations of Poisson and Laplace

These equations are useful in the solution of many  p 0 P 0
problems concerning electrostatics especially the problem _ E+AE
of space charge* present in an electronic valve. The two . ® o ',7
equations can be derived by applying Gauss’s theorem. ® = ! |
Consider the electric field set up between two charged + Ev !
plates P and QO [Fig. 4.14 (a)]. Suppose there is some @ - Lo
electric charge present in the space between the two plates. - _ : :
It is, generally, known as the space charge. Let the space | @ _ L
charge density be p coulomb/metre3. It will be assumed ~av e

(a) (b)

that the space charge density varies from one point of space Fio. 414
ig. 4.

to the another but is uniform throughout any thin layer
taken parallel to the plates P and Q. If X-axis is taken
perpendicular to the plates, then p is assumed to depend on the value of x. It will be seen from Fig.
4.14 (a) that the value of electric intensity E increases with x because of the space charge.

Now, consider a thin volume element of cross-section 4 and thickness A x as shown in Fig. 4.14 (b).
The values of electric intensity at the two opposite faces of this element are £ and (£ + A E). If
dE/dx represents the rate of increases of electric intensity with distance, then

AE = a—E><A)c E+AE=E+8—E><Ax
Jdx Jdx

The surface integral of electric intensity over the right-hand face of this element is

*  Such a space charge exists in the space between the cathode and anode of a vacuum tube.
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= E+a—E.Ax A
dx

The surface integral over the left-hand face of the element is =—FE x 4
The negative sign represents the fact that £ is directed inwards over this face.
The surface integral over the entire surface, i.e., the closed surface of the element is

=|E+ g—E Ax|A-EXA=A4.Ax. g—E From symmetry it is evident that along with y and
X X
z there is no field.
Now, according to Gauss’s theorem (Art. 4.9), the surface integral of electric intensity over a
closed surface is equal to 1/¢ , time the charge within that surface.

Volume of the element, dV'=A4 X A x;charge=p 4. A x

9E _ 1 9E_p

A.Ax.ax pA.Ax.80 or ax_so
__3_V.3_E_i(_d_V)__32V L YV __»
Now E= =9y "9x T ax\ )" axr 1 axt g

It is known as Poisson’s equation in one dimension where potential varies with x.

2 2 2
o 12/ + 0 Z + J Z =P _ V% in vector notation.
0x~ 09y 9dz £
If, as a special case, where space charge density is zero, then obviously,
VX =0
o’V v v

In general, we have 5 + + 5 =0or V2 ¥ =0 in vector notation where V7 is

ax* 9y 9z
defined (in cartesian co-ordinates) as the operation
2 2 2
v = 2 12/ . & Z o0 12/
Jdx dy 0z
It is known as Laplace’s equation.

When V varies with x, y and z, then

4.11. Electric Potential and Energy

We know that a body raised above the ground level has a certain amount of mechanical potential
energy which, by definition, is given by the amount of work done in raising it to that height. If, for
example, a body of 5 kg is raised against gravity through 10
m, then the potential energy of the body is 5 x 10=50 m-kg.
wt. =50 x 9.8 =490 joules. The body falls because there is
attraction due to gravity and always proceeds from a place of
higher potential energy to one of lower potential energy. So,
we speak of gravitational potential energy or briefly ‘poten-
tial” at different points in the earth’s gravitational field.

Now, consider an electric field. Imagine an isolated
positive charge QO placed in air (Fig. 4.15). Like earth’s
gravitational field, it has its own electrostatic field which
theoretically extends upto infinity. If the charge X'is very far
away from Q, say, at infinity, then force on it is practically  ysing van De Graff Generator, artificial

0 zero. As X is lightning can be created in the
A CHARGE  brought nearer to laboratory, in a miature scale.
@ : /i) 0, a force of
repulsion acts on it (as similar charges repel each other),
Fig. 4.15 hence work or energy is required to bring it to a point like 4

in the electric field. Hence, when at point 4, charge X has
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some amount of electric potential energy. Similar other points in the field will also have some potential
energy. In the gravitational field, usually ‘sea level’ is chosen as the place of ‘zero’ potential. In
electric field infinity is chosen as the theoretical place of ‘zero’ potential although, in practice, earth
is chosen as ‘zero’ potential, because earth is such a large conductor that its potential remains practically
constant although it keeps on losing and gaining electric charge every day.

4.12. Potential and Potential Difference

As explained above, the force acting on a charge at infinity is zero, hence ‘infinity’ is chosen as
the theoretical place of zero electric potential. Therefore, potential at any point in an electric field
may be defined as

numerically equal to the work done in bringing a positive charge of one coulomb from infin-
ity to that point against the electric field.

The unit of this potential will depend on the unit of charge taken and the work done.

If, in shifting one coulomb from infinity to a certain point in the electric field, the work done is
one joule, then potential of that ponit is one volt.

Obviously, potential is work per unit charge,

1 joule

LvEl = 1 coulomb

Similarly, potential difference (p.d.) of one volt exists between two points if one joule of work is
done in shifting a charge of one coulomb from one point to the other.

4.13. Potential at a Point

Consider a positive point charge of O coulombs placed in air.

At a point x metres from it, the force on one coulomb positive = ll) j? “Il
charge is O/4 n80x2 (Fig. 4.16). Suppose, this one coulomb charge y _.i i<d |
is moved towards Q through a small distance dx. Then, work done is . *
0
aw = X (= dx) -
ey Fig. 4.16

The negative sign is taken because dx is considered along the negative direction of x.

The total work done in bringing this coulomb of positive charge from infinity to any point D

which is d metres from Q is given by
x=d

dx O (4dx
wo - ot o 0 [
2. 41t€0x2 4ne) Joo ¥
€ L o)
= —_— = — = — - | == = 1
dne, | x| dne, | d oo dme,d joutes
By definition, this work in joules in numerically equal to the potential of that point in volts.
Q o O .
= ——=9x10" = volt —
V amegd d Vo in air
9
and v = ﬁ =9x10 Sr% volt —in medium

We find that as d increases, V" decreases till it becomes zero at infinity.

4.14. Potential of a Charged Conducting Sphere

The above formula V= Q/4re €, d applies only to a charge concentrated at a point. The problem
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of finding potential at a point outside a charged sphere sounds
difficult, because the charge on the sphere is distributed over its
entire surface and so, is not concentrated at a point. But the problem
is easily solved by nothing that the lines of force of a charged sphere,
like 4 in by noting that the lines of force of a charged sphere, like
A in Fig. 4.17 spread out normally from its surface. If produced
backwards, they meet at the centre of 4. Hence for finding the
potentials at points outside the sphere, we can imagine the charge
on the sphere as concentrated at its centre O. If r is the radius of
sphere in metres and Q its charge in coulomb then, potential of its
surface is Q/4n g, r volt and electric intensity is
Ol4me, At any other point ‘d” metres from the centre of the
sphere, the corresponding values are Q/4n €,d and Q/4ne, &
respectively with d > r as shown in Fig. 4.18 though its starting

EQUIPOTENTIAL
SURFACE

Fig. 4.17

point is coincident with that of ». The variations of the potential and electric intensity with distance

for a charged sphere are shown in Fig. 4.18.

4.15. Equipotential Surfaces

An equipotential surface is a surface in an electric field such that all points on it are at the same
potential. For example, different spherical surfaces around a
T charged sphere are equipotential surfaces. One important property

45
QQ

+

+
|
4 +}
5 }
|
o | 0
4 meyr }92 | 4 e d
\ g; \
| QE |
E=EN
\ | o
|
| |
0 E__ ‘
41'[:8072 }\UE } Q
\E% /_4n£0d2
[ Bm [
| S5 |
EI=E
— DISTANCE
Fig. 4.18 Fig. 4.19

E=0
0=0
¥Y=0

of'an equipotential surface is that the direction of the electric field
strength and flux density is always at right angles to the surface.
Also, electric flux emerges out normal to such a surface. If, it is
not so, then there would be some component of £ along the surface
resulting in potential difference between various points lying on
it which is contrary to the definition of an equipotential surface.

4.16. Potential and Electric Intensity Inside a Conducting Sphere

It has been experimentally found that when charge is given to a conducting body say, a sphere
then it resides entirely on its outer surface i.e., within a conducting body whether hollow or solid, the
charge is zero. Hence, (i) flux is zero (ii) field intensity is zero (i) all points within the conductor are

at the same potential as at its surface (Fig. 4.19).

Example 4.9. Three concentric spheres of radii 4, 6 and 8 cm have charges of + 8, -6 and + 4
puC respectively. What are the potentials and field strengths at points, 2, 5, 7 and 10 cm from the

centre.
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Solution. As shown in Fig. 4.20, let the three spheres be
marked 4, B and C. It should be remembered that (i) the field
intensity outside a sphere is the same as that obtained by con-
sidering the charge at its centre (ii) inside the sphere, the field
strength is zero (iii) potential anywhere inside a sphere is the
same as at its surface.

(i) Consider point ‘a’ at a distance of 2 cm from the cen-
tre O. Since it is inside all the spheres, field strength at this
point is zero.

Potential at ‘a’

(0] 9 0 Fig. 4.20
= )Y =2 _-—9x10° ) =
2 drne,d x 2 d
§x10"?  6x107? 4x107"?
= 9x10° - + =1.
( 0.04 0.06 0.08 BV
(ii) Since point ‘b’ is outside sphere 4 but inside B and C.
Electrical field = —2— =9x10° £ NiC
dred d
-12
= ox10'x 2210 g8 Nic
0.05
—12 —12 —12
Potential at b= gx100x| 3X10 7 6x10 7 4x10 7§99y
0.05 0.06 0.08

(iii) The field strength at point ‘c’ distant 7 cm from centre O

—12 —12
—ox10°x |31 6105 6 nie
| 0.07 0.07
, o [8x1077 6x107" 4x107?]
‘o= - + =0.
Potential at ‘¢ 9%x10" x 0.07 0.07 0.08 071V

(iv) Field strength at ‘d” distant 10 cgm from point O is )
§x10™  6x1077  4x107"

= 9x10°x =54 N/C
| or’ 0.1% 0.1> |
[8x10™2 6x102 4x10™2]
i ‘@ = 9%x10°x - + =0.
Potential at ‘d 9x%x10 o1 01 01 054V

Example 4.10. Two positive point charges of 12 X 10" Cand 8 - x10"" C are placed 10 cm
apart. Find the work done in bringing the two charges 4 cm closer.
Solution. Suppose the 12 x 10°¢c charge to be fixed. Now, the potential of a point 10 cm from

-10
this charge = 9x10° % =108 V
The potential of a point distant 6 cm from it "
= ox10°x 12X10 7 g0y
0.06
potential difference = 180—-108=72V
Work done = charge X p.d. =8 x 10"% 72=5.76 x 10*® joule

Example 4.11. A point charge 0f109 C is placed at a point A in free space. Calculate :
(1) the intensity of electrostatic field on the surface of sphere of radius 5 cm and centre A.
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(i) the difference of potential between two points 20 cm and 10 cm away from the charge at A.
(Elements of Elect.-I, Banglore Univ. 1987)
Solution. (i) E = Qlne,r”=10"/4m x 8.854x 107 x (5x 107)*=3,595 V/m
(i) Potential of first point = Q/4me,d=10"/4m x 8.854x 107°x 02=45V
Potential of second point 107/41 x 8.854%x 1072 x 0.1=90 V
p.d. between two points = 90 -45 =45V

4.17. Potential Gradient

It is defined as the rate of change of potential with distance in the direction of electric force

. av

ie. e

Its unit is volt/metre although volt/cm is generally used in practice. Suppose in an electric field
of strength E, there are two points dx metre apart. The p.d. between them is

dv .
= E.(-dx)=—E.dx . E=-—F1
dv (= dx) x I ()

The -ve sign indicates that the electric field is directed outward, while the potential increases
inward.

Hence, it means that electric intensity at a point is equal to the negative potential gradient at
that point.

4.18. Breakdown Voltage and Dielectric Strength

An insulator or dielectric is a substance within which there are no mobile electrons necessary for
electric conduction. However, when the voltage applied to such an insulator exceeds a certain value,
then it breaks down and allows a heavy electric current (much larger than the usual leakage current)
to flow through it. If the insulator is a solid medium, it gets punctured or cracked.

The disruptive or breakdown voltage of an insulator is the minimum voltage required to break it
down.*

Dielectric strength of an insulator or dielectric medium is given by the maximum potential
difference which a unit thickness of the medium can withstand without breaking down.

In other words, the dielectric strength is given by the potential gradient necessary to cause break-
down of an insulator. Its unit is volt/metre (V/m) although it is usually expressed in kV/mm.

For example, when we say that the dielectric strength of air is 3 kV/mm, then it means that the
maximum p.d. which one mm thickness of air can withstand across it without breaking down is 3 kV
or 3000 volts. If the p.d. exceeds this value, then air insulation breaks down allowing large electric
current to pass through.

Dielectric strength of various insulating materials is very important factor in the design of high-
voltage generators, motors and transformers. Its value depends on the thickness of the insulator,
temperature, moisture, content, shape and several other factors.

For example doubling the thickness of insulation does not double the safe working voltage in a
machine.**

*  Flashover is the disruptive discharge which taken places over the surface of an insulator and occurs when
the air surrounding it breaks down. Disruptive conduction is luminous.

**  The relation between the breakdown voltage } and the thickness of the dielectric is given approximately by
the relation V= A£?
where 4 is a constant depending on the nature of the medium and also on the thickness ¢. The above
statement is known as Baur’s law.
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Note. It is obvious that the electric intensity E, potential gradient and dielectric strength are dimensionally
equal.

4.19. Safety Factor of a Dielectric

It is given by the ratio of the dielectric strength of the insulator and the electric field intensity
established in it. If we represent the dielectric strength by £, ; and the actual field intensity by £, then
safety factor k =E,IE

For example, for air £}, ;= 3 X 10° V/m. Ifwe establish a field intensity of 3 X 10° V/min it, then,
k=3% 10°3- 10°=10.

4.20. Boundary Conditions

There are discontinuities in electric fields at the
boundaries between conductors and dielectrics of different
permittivities. The relationships existing between the
electric field strengths and flux densities at the boundary
are called the boundary conditions.

With reference to Fig. 4.21, first boundary conditions
is that the normal component of flux density is continuous
across a surface.

As shown, the electric flux approaches the boundary
BB at an angle 0, and leaves it at ©,. D,, and D,, are the
normal components of D, and D,. According to first
boundary condition,

. B
Dln: D2n (I)
The second boundary condition is that the tangential Fig. 4.21
field strength is continuous across the boundary
E, = E, ...(ii)

In Fig. 4.21, we see that

D,, = D;cos®, and D, =D,cosb,
Also E, = Dk, and E,, = D;sin0,/,
Similarly, E, = D,/e, and E, =D,sin0,/t,
D, € D €
In _ 1 and 2n 2
Et tan 0, E,, tan 0,
tan O, €
Since D, = D,, and E, = E,, —1=_
tan 0, &,

This gives the law of electric flux refraction at a boundary.
Itis seen thatife, >¢,, 6,>0,.

Table No. 4.1
Dielectric Constant and Strength
(*indicates average value)

Insulating material Dielectric constant or relative Dielectric Strength in

permittivity (e,) kV/mm
Air 1.0006 3.2
Asbestos* 2 2
Bakelite 5 15
Epoxy 33 20



208 Electrical Technology

Glass 5-12 12-100
Marble* 7 2
Mica 4-8 20-200
Micanite 4-5-6 25-35
Mineral Oil 2.2 10
Mylar 3 400
Nylon 4.1 16
Paper 1.8-2.6 18
Paraffin wax 1.7-2.3 30
Polyethylene 2.3 40
Polyurethane 3.6 35
Porcelain 5-6.7 15
PVC 3.7 50
Quartz 4.5-4.7 8
Rubber 2.5-4 12-20
Teflon 2 20
Vacuum 1 infinity
Wood 2.5-7 -

Example 4.12. Find the radius of an isolated sphere capable of being charged to 1 million volt
potential before sparking into the air, given that breakdown voltage of air is 30,000 V/cm.

Solution. Let 7 metres be the radius of the spheres, then
_ 90 6 )
Vo= =10" V (i
dne,r ®
30,000 V/iem =3 x 10° V/m
Since electric intensity equals breakdown voltage

Breakdown voltage

E Y 5 =3X% 10® V/m ..(ii)
4mer

Dividing (i) by (i), we get » = 1/3 =0.33 metre

Example 4.13. A parallel plate capacitor having waxes paper as the insulator has a capaci-
tance of 3800 pF;, operating voltage of 600 V and safety factor of 2.5. The waxed paper has a relative
permittivity of 4.3 and breakdown voltage of 15 - 1 0° V/m. Find the spacing d between the two plates
of the capacitor and the plate area.

Solution. Breakdown voltage V, ,= operating voltage X safety factor=600- 2.5=1500V

V,,=dx E,,  or d = 1500/15x 10°=10"m=0.1 mm

C=gye,4/d  or A = Cd/eye,=3800x 107 x 10%/8.854x 1077 43=0.01 m’

Example 4.14. Two brass plates are arranged horizontally, one 2 cm above the other and the
lower plate is earthed. The plates are charged to a difference of potential of 6,000 volts. A drop of
oil with an electric charge of 1.6 X 1 0" Cisin equilibrium between the plates so that it neither rises
nor falls. What is the mass of the drop ?

Solution. The electric intensity is equal to the potential gradient between the plates.
g = 6,000/2 =3,000 volt/cm =3 X 10° V/m

E =3%x10°V/m or N/C
forceondrop = Ex 0=3x 10°x 1.6x 1077 =4.8x 10™N
Wt. of drop = mgnewton
mx 981 = 48x 10 - m=489x 10™ kg
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Example 4.15. A parallel-plate capacitor has plates
0.15 mm apart and dielectric with relative permittivity of 3. w
Find the electric field intensity and the voltage between plates J

if the surface charge is 5 X 1 0* ,uC/cmz.
(Electrical Engineering, Calcutta Univ.) Capacitor

olution. The electric intensity between the plates i
S e electric intensity betwee ¢ plates1s A battery will transport charge from one

D ) plate to the other until the voltage
E= volt/metre; produced by the charge buildup is equal
0%r to the battery voltage

Now, o=5x 10" u Clem*=5x 10° C/m?
Since, charge density equals flux density

6
g D __ 5x10 = 188,000 V/m = 188 kV/m

€€, 8.854x102x3

Now potential difference V'=FE x dx = 188,000 x (0.15 % 103) =282V
Example 4.16. A parallel-plate capacitor consists of two square metal plates 500 mm on a side
separated by 10 mm. A slab of Teflon (€, = 2.0) 6 mm thick is placed on the lower plate leaving an
air gap 4 mm thick between it and the upper plate. If 100 V is applied across the capacitor, find the
electric field (E,) in the air, electric field E, in Teflon, flux density D, in air, flux density D, in Teflon
and potential difference V, across Teflon slab. (Circuit and Field Theory, A.M.LE. Sec. B)
goA _ 8.854x107% x(0.5)°
(d /e, +dy/e,)  (6x107/2) + (4 x107°/1)
0 = CV=3.16x 10"x 100=31.6x 10°C
D = 0/4=31.6x 10°/(0.5)*=1.265x 107 C/m’
The charge or flux density will be the same in both mediai.e. D,=D,=D
In air, E, = D/e,=1265x 107/8.854 x 107°=14,280 V/m
In Teflon, E, = Dleye,=14,280/2=7,140 V/m
V, = Ex d,=7,140x 6x 10°=42.8V
Example 4.17. Calculate the dielectric flux in micro-coulombs between two parallel plates
each 35 cm square with an air gap of 1.5 mm between them, the p.d. being 3,000 V. A sheet of
insulating material 1 mm thick is inserted between the plates, the 05
PRI . . . . . _ ‘ 1
permittivity of the insulating material being 6. Find out the poten h-m;k— mm —

tial gradient in the insulating material and also in air if the voltage
across the plates is raised to 7,500 V.

Solution. C = =3.16x107"°F

AIR
E

(Elect. Engg.-I, Nagpur Univ.)

Solution. The capacitance of the two parallel plates is
C =¢,¢e,4/d Now,e =1 —for air
A =35x35x 10*=1225% 10*m*; d=1.5% 10°m
_ 8.854x107° x1,225x10”"
1.5x107

Charge Q = CV'=7.22x 10™° x 3,000 coulomb

AN

F=722x10"""F - 5

T
NS
v

C

7.500 V——"——
Fig. 4.22
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Dielectric flux = 7.22 x 3,000 x 10'°C
= 2,166 x 10°C=2.166 pC
With reference to Fig. 4.23, we have
V, = E;x,=05x 10°E,; V,=10"E,
Now V=V +V,

7,500 = 0.5x 10°E, +10° E,
or E,+2E,= 15x 10° (i)
Also D =¢,¢e,E =¢,e,E, .. E=06E, (i)

From (i) and (ii), we obtain E, = 11.25 x 10°V/m; E, = 1.875x 10° V/m

Example 4.18. An electric field in a medium with relative permittivity of 7 passes into a
medium of relative permittivity 2. If E makes an angle of 60° with the normal to the bound-
ary in the first dielectric, what angle does the field make with the normal in the second
dielectric ?

(Elect. Engg. Nagpur Univ.)
Solution. As seen from Art. 4.19.

tan °
B _ & 60T an 0,= V3 X 2/7 = 4.95 or 6, 2620/
tan 0, g, tan 0, 2

Example 4.19. Two parallel sheets of glass having a uniform air gap between their inner
surfaces are sealed around their edges (Fig. 4.23). They are immersed in oil having a relative
permittivity of 6 and are mounted vertically. The glass has a relative permittivity of 3. Calculate the
values of electric field strength in the glass and the air when that in the oil is 1.2 kV/m. The field
enters the glass at 60° to the horizontal.

Solution. Using the law of electric flux refraction, we get (Fig. 4.23).
tan 0,/tan 0, = €,/e,=¢€,€,,/€,€, =(€,,/€, )
tan©, = (6/3) tan 60°

= 2x 1.732=3.464; OIL AIR OIL
6, = 73.9°
Similarly
tan 0, = (¢ 5/€,,) tan 0, = (1/6) tan 73.9° 0,= 60°
= 0.577; .. 65=130° o V
As shown in Art. 4.20. E
D,, = D,,orD, cos6 =D,cos0, @

D, = D;Xx cos0,/cos0,0r g,¢,E,

= g,€,, £, X cos 0,/cos 0,
s 6E, = 3% 12x 10°x cos 60%cos 73.9° %
s E, = 1082 V/m
Now, €,€,,E;co80;=¢,€,,E,cos 0, @ @ @
. Ey = E,(g,/¢,3) X (cos0,/cos 05)
= 1082 (6/1) (cos 73.9%cos 30°) =2079V/m Fig. 4.23
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Tutorial Problems No. 4.1

. Two parallel metal plates of large area are spaced at a distance of 1 cm from each other in air and a
p.d. of 5,000 V is maintained between them. If a sheet of glass 0.5 cm thick and having a relative
permittivity of 6 is introduced between the plates, what will be the maximum electric stress and
where will it occur ? [8.57 kV/cmy; in air]

. A capacitor, formed by two parallel plates of large area, spaced 2 cm apart in air, is connected to a
10,000 V d.c. supply. Calculate the electric stress in the air when a flat sheet of glass of thickness 1.5
cm and relative permittivity 7 is introduced between the plates. [1.4% 10 V/m)

. A capacitor is made up of two parallel circular metal discs separated by three layers of dielectric of
equal thickness but having relative permittivities of 3, 4 and 5 respectively. The diameter of each
disc is 25.4 cm and the distance between them is 6 cm. Calculate the potential gradient in each
dielectric when a p.d. of 1,500 V is applied between the discs. [319.25 239.4; 191.5 kV/m]

. A capacitor, formed by two parallel plates of large area, spaced 2 cm apart in air, is connected to a
10,000 V d.c. supply. Calculate the electric stress in the air when a flat sheet of glass of thickness 0.5
cm and relative permittivity 5 is introduced between the plates. [0.625% 10* V/m]

. The capacitance of a capacitor formed by two parallel metal plates, each having an effective surface
area of 50 cm” and separated by a dielectric 1 mm thick, is 0.0001 pF. The plates are charged to a p.d.
of 200 V. Calculate (@) the charge stored () the electric flux density (c) the relative permittivity of
the dielectric. [(@) 0.02 pC (b) 4 pC/m” (c) 2.26]

. A capacitor is constructed from two parallel metallic circular plates separated by three layers of
dielectric each 0.5 cm thick and having relative permittivity of 4, 6 and 8 respectively. If the metal
discs are 15.25 cm in diameter, calculate the potential gradient in each dielectric when the applied
voltage is 1,000 volts. (Elect. Engg.-1 Delhi Univ.)

. A point electric charge of 8 uC is kept at a distance of 1 metre from another point charge of —4 nC
in free space. Determine the location of a point along the line joining two charges where in the
electric field intensity is zero.
(Elect. Engineering, Kerala Univ.)
. In a given R-L circuit, R = 35Q and L = 0.1H. Find (i) current through the circuit (if) power
factor if a 50 Hz frequency, voltage V = 220£30° is applied across the circuit.
(RGPV, Bhopal 2001)
. Three voltage represented by e; = 20 sin ®¢, e, = 30 sin (w¢ = 45°) and e; = sin (0t + 30°)
are connected in series and then connected to a load of impedance (2 +; 3) € Find the resultant

current and power factor of the circuit. Draw the phasor diagram.
(B.P.T.U. Orissa 2003) (RGPV Bhopal 2001)

OBJECTIVETESTS -4

. The unit of absolute permittivity of a between them would be nearly...... newton
medium is (a) 1
(a) joule/coulomb () 9% 10°
(b) newton-metre (¢) 4m
(c) farad/metere (d) 8.854x 107
(d) farad/coulomb 4. Electric flux emanating from an electric
. Ifrelative permittivity of mica is 5, its abso- charge of + O coulomb is
lute permittivity is (a) O, (b) O,
(a) 5¢, (b) 5kg, (¢) Oleg, d 0
(o) g5 (d) 8.854x 10* 5. The unit of electric intensity is
. Two similar electric charges of 1 C each are (a) joule/coulomb

placed 1 m apart in air. Force of repulsion (b) newton/coulomb
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(c) volt/metre
(d) both (b) and (c)

. If D is the electric flux density, then value

of electric intensity in air is
(a) Dl (b) Dleg,
(c) dVv/dt (d) QOkA

. For any medium, electric flux density D is

related to electric intensity £ by the equation
(a) D=¢,E (b) D =g E
(c) D=Eleg, (d) D=¢gyEle,

. Inside a conducting sphere,...remains

constant

(a) electric flux

(b) electric intensity
(c) charge

(d) potential

. The SI unit of electric intensity is

(@) N/m
(b) V/m
(¢) N/C
(d) either (b) or (c)

10.

11.

12.

ANSWERS

oS

3. b
9. d

ISURIRS

4. d

10.

a

According to Gauss’s theorem, the surface
integral of the normal component of elec-
tric flux density D over a closed surface con-
taining charge Q is

(@) O (b) Ok,

(©) &0 d O,
Which of the following is zero inside a
charged conducting sphere ?

(a) potential

(b) electric intensity

(c) both (a) and (b)

(d) both () and (c)

In practice, earth is chosen as a place of zero

electric potential because it

(a) is non-conducting

(b) is easily available

(¢) keeps lossing and gaining electric
charge every day

(d) has almost constant potential.

5. d 6. a
11. ¢ 12. d
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5.1. Capacitor

A capacitor essentially consists of two conducting surfaces separated
by a layer of an insulating medium called dielectric. The conducting sur-
faces may be in the form of either circular (or rectangular) plates or be of
spherical or cylindrical shape. The purpose of a capacitor is to store elec-
trical energy by electrostatic stress in the dielectric (the word ‘condenser’
is a misnomer since a capacitor does not ‘condense’ electricity as such, it
merely stores it).

A parallel-plate capacitor is shown in Fig. 5.1. One plate is joined to
the positive end of the supply and the other to the negative end or is earthed.
It is experimentally found that in the presence of an earthed plate B, plate
A is capable of withholding more charge than when B is not there. When
such a capacitor is put across a battery, there is a momentary flow of |
electrons from 4 to B. As negatively-charged electrons are withdrawn | l
from 4, it becomes positive and as these electrons collect on B, it becomes
negative. Hence, a p.d. is established between plates 4 and B. The transient Fig. 5.1
flow of electrons gives rise to charging current. The strength of the charging
current is maximum when the two plates are uncharged but it then decreases and finally ceases when
p.d. across the plates becomes slowly and slowly equal and opposite to the battery e.m.f.

5.2. Capacitance

The property of a capacitor to ‘store electricity’ may be called
its capacitance.

As we may measure the capacity of a tank, not by the total
mass or volume of water it can hold, but by the mass in kg of
water required to raise its level by one metre, similarly, the
capacitance of a capacitor is defined as “the amount of charge
required to create a unit p.d. between its plates.”

Suppose we give O coulomb of charge to one of the two plate
of capacitor and if a p.d. of V' volts is established between the two,
then its capacitance is

C= Q = charge A capacitor stores electricity
V' potential differnce
Hence, capacitance is the charge required per unit potential difference.
By definition, the unit of capacitance is coulomb/volt which is also called farad (in honour of
Michael Faraday)

o 1 farad = 1 coulomb/volt
One farad is defined as the capacitance of a capacitor which requires a charge of one coulomb
to establish a p.d. of one volt between its plates.

One farad is actually too large for practical purposes. Hence, much smaller units like microfarad
(UF), nanofarad (nF) and micro-microfarad (UUF) or picofarad (pF) are generally employed.

luF = 10°F; 1 nF=10°F ; 1 yuF or pF = 10"%F
Incidentally, capacitance is that property of a capacitor which delays and change of voltage
across it.

5.3. Capacitance of an Isolated Sphere

Consider a charged sphere of radius 7 metres having a charge of O coulomb placed in a medium
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of relative permittivity €, as shown in Fig. 5.2.

It has been proved in Art 4.13 that the free surface potential
of such a sphere with respect to infinity (in practice, earth) is given by
Vv = - Y =4me e, 1
4me e, r 14
By definition, Q/V = capacitance C

= 4ne e, rF —1in amedium
4m 80 rE —in air Fig. 5.2

Note : It is sometimes felt surprising that an isolated sphere can act as a capacitor because, at first sight, it
appears to have one plate only. The question arises as to which is the second surface. But if we remember that
the surface potential / is with reference to infinity (actually earth) then it is obvious that the other surface is
earth. The capacitance 4 T €, r exists between the surface of the sphere and earth.

5.4. Spherical Capacitor

(@) When outer sphere is earthed

Consider a spherical capacitor consisting of two concentric spheres of radii ‘@’ and ‘b’ metres as
shown in Fig. 5.3. Suppose, the inner sphere is given a charge of + O
coulombs. It will induce a charge of O coulombs on the inner surfaces
which will go to earth. If the dielectric medium between the two spheres
has a relative permittivity of € , then the free surface potential of the inner
sphere due to its own charge Q/4 w e, €, a volts. The potential of the
inner sphere due to —Q charge on the outer sphere is ~Q/4 me €, b
(remembering that potential anywhere inside a sphere is the same as that
its surface).

Total potential difference between two surfaces is

Y Y

dmeye.a 4me e b

- L(l_l):L b-a
dreye. \a b/ 4dmeye. \ ab
4
Q _ 4mgye ab . C=4meg,e, ab_
14 b-a b—a

(b) When inner sphere is earthed

Fig. 5.4

Such a capacitor is shown in Fig. 5.4. If a charge of + O coulombs is given to the outer sphere 4,
it will distribute itself over both its inner and outer surfaces. Some charge O, coulomb will remain on
the outer surface of 4 because it is surrounded by earth all around. Also, some charge
+ O, coulombs will shift to its inner side because there is an earthed sphere B inside 4.

Obviously, 0=0+0,

The inner charge + O, coulomb on 4 induces —Q, coulomb on B but the other induced charge of
+ O, coulomb goes to earth.

Now, there are two capacitors connected in parallel :
(i) One capacitor consists of the inner surface of 4 and the outer surface of B. Its capacitance,

as found earlier, is
ab

—a

C, =4me e
1 Orb

(if) The second capacitor consists of outer surfaces of B and earth. Its capacitanceis C, =4 ¢,
b —if surrounding medium is air. Total capacitance C = C, + C,.
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5.5. Parallel-plate Capacitor

Dielectric

(i) Uniform Dielectric-Medium

A parallel-plate capacitor consisting of two plates M and

N each of area 4 m? separated by a thickness d metres of a
medium of relative permittivity €,

M N is shown in Fig. 5.5. If a charge

+ -
of + O coulomb is given to plate
+ = M, then flux passing through the
(_8 medl.um. 15 Y= 0 _Coul.()mb' Flux Electrometer Electrometer
density in the medium is (@ (b)
+ - v _ 0O The figure shows how the
A = D= E = z capacitance changes when
L L. . dielectric constant is changed
- Electric intensity £ = V/d and
L— d ——| D=¢ E
Fig. 5.5
g or Q _ L . Q0_e4
4 d Vo d
e A . . :
C= OT’ farad —in a medium ()
g, A4 oy .
= OT farad — with air as medium

(i) Medium Partly Air

As shown in Fig. 5.6, the medium consists partly of air and partly ~t=
of parallel-sided dielectric slab of thickness # and relative permittivity
€,. The electric flux density D = Q/A4 is the same in both media. But
electric intensities are different.

E = D ... in the medium €6
€€,
E, = D ... In air =
€
.d. between plates, V =E .t+E,(d—t
p p 1 2( ) d
_ _D D _D(t
= t+—d-t)=—| —+d -t Fia. 5.6
g€, £ g | €, 9 >

_ 9
f%AW(tﬂw]

o _ €g,4 or C= g, 4
14 [d—(t—t/e,)] [d—-(t—t/e,)]

If the medium were totally air, then capacitance would have been

C = g d/d

From (ii) and (iii), it is obvious that when a dielectric slab of thickness # and relative permittivity
¢, is introduced between the plates of an air capacitor, then its capacitance increases because as seen
from (ii), the denominator decreases. The distance between the plates is effectively reduces by
(t —t/e,). To bring the capacitance back to its original value, the capacitor plates will have to be

further separated by that much distance in air. Hence, the new separation between the two plates
would be = [d+(t—t/¢e)]

or

(i)

g, A
d/e

7

The expression given in (i) above can be written as C =
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If the space between the plates is filled with slabs of different thickness and relative permittivities,

. L g, A4
then the above expression can be generalized into C = —2
Xd/e,
The capacitance of the capacitor shown in Fig. 5.7 can be written as

(iii) Composite Medium

The above expression may be derived independently as given under :

If V' is the total potential difference across the capacitor plates and V,, V,, V5, the potential
differences across the three dielectric slabs, then
Vo=V, +V,+V,=E\t +Eyt,+Est,

-2 2Dy

/ / 881 | E €y g4
T/R/ _ Q[f_1+i+f_3]_g(f_l+i+f_s]

& &1 €2 &3 ) A& £, &3
g, 4
b, 46,4+ 1,4 N 0
V(4 t, 4
Fig. 5.7 FEa
8rl Sr2 8r3

5.6. Special Cases of Parallel-plate Capacitor

Consider the cases illustrated in Fig. 5.8. d 4
(i) As shown in Fig. 5.8 (a), the dielectric is of

thickness d but occupies only a part of the area. This ’
arrangement is equal to two capacitors in parallel. Their A *
capacitances are . &
€0 4, € ¢, 4, B
C, = and C,= ——— L
d d ain = aF /
Total capacitance of the parallel-plate capacitor is A i £ 2
2 -> -
C—C+C—£°A1+£°8’ b - .
=2 d d (a) (b)
(ii) The arrangement shown in Fig. 5.8 (b) con- Fig. 5.8
sists of two capacitors connected in parallel.
&4

(a) one capacitor having plate area 4, and air as dielectric. Its capacitance is C, =
(b) the other capacitor has dielectric partly air and partly some other medium. Its capacitance is

[Art5.5 ii)]. C,= — S0b

—31 = Total capacitance is C= C| + C,
[d—(t—t/g,)

5.7. Multiple and Variable Capacitors

Multiple capacitors are shown in Fig. 5.9 and Fig. 5.10.

The arrangement of Fig. 5.9. is equivalent to two capacitors joined in parallel. Hence, its
capacitance is double that of a single capacitor. Similarly, the arrangement of Fig. 5.10 has four times
the capacitance of single capacitor.
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If one set of plates is fixed and the other is capable of rotation, then
capacitance of such a multiplate capacitor can be varied. Such variable-
capacitance air capacitors are widely used in radio work (Fig. 5.11). The
set of fixed plates F is insulated from the other set R which can be rotated
by turning the knob K. The common area between the two sets is varied
by rotating K, hence the capacitance between the two is altered. Minimum
capacitance is obtained when R is completely rotated out of /" and maximum
when R is completely rotated in i.e. when the two sets of plates completely

Electrical Technology

(@)
Fig. 5.9

overlap each other.

The capacitance of such a capacitor is

_ (m-1).gpe 4
d
where 7 is the number of plates which means that (n —1) is the number of
capacitors.
Example 5.1. The voltage applied across a capacitor having a Fig. 5.11
capacitance of 10 W F is varied thus :
600 The p.d. is increased uniformly from 0 to 600 Vin seconds. It
v is then maintained constant at 600V for I second and subse-
400 quently decreased uniformly to zero in five seconds. Plot a
graph showing the variation of current during these 8 sec-
‘ 200 onds. Calculate (8) the charge (D) the energy stored in the
capacitor when the terminal voltage is 600.
(Principles of Elect. Engg.-I, Jadavpur Univ.)
L 3 4 5 6 7 8 Solution. The variation of voltage across the capacitor is as
—>t shown in Fig. 5.12 (a).
(a) The charging current is given by
2 P ﬂ_i(cv)—cﬂ
2 T odr T de T e
‘ 1 Charging current during the first stage
0 ) |3 |8 =10x 10°x (600/2)=3x 10° A=3mA
12 Charging current during the second stage is zero because

ey
(b)
Fig. 5.12

dv/dt = 0 as the voltage remains constant.
Charging current through the third stage

= 10x 10°x (0_5600)——1.2>< 10°A=-12mA

The waveform of the charging current or capacitor current is shown in Fig. 5.12 (b).

(@) Charge when a steady voltage of 600 V is applied is = 600 x 10x 10°=6x 107> C

(b) Energy stored=1 C¥V*=1 x 10°x 600°=1.8J

Example 5.2. 4 voltage of V'is applied to the inner sphere of a spherical capacitor, whereas the
outer sphere is earthed. The inner sphere has a radius of a and the outer one of b. If b is fixed and a may
be varied, prove that the maximum stress in the dielectric cannot be reduced below a value of 4 V/b.
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Solution. As seen from Art. 5.4,

0 ( 1 1 ) .
V= ——--=
dre e, \a b ®
As per Art. 4.15, the value of electric intensity at any radius x between the two spheres is given
byE=—2  oro=dne e E
dme e, x
Substituting this value in (7) above, we get
4me e, x°E
o= Z055 T 2 (l—l) o E=—V 5
4neye, \a b (1/a—1/b)x

As per Art. 5.9, the maximum value of £ occurs as the surface of inner sphere i.e. when x = a
For E to be maximum or minimum, dE/da = 0.
d (1 1) 2 d 2
-—=-= =0 — (a=a’lb)=0
da (a b) “ or da (@ ~a’/b)

or 1-2ab =0 or a=5b/2

Now, E = % SE, .= 4 - = V2
(1/a-1/b)x (1/a—=1/b)a (a—a”/b)

Since, a = b/2 - E = 4 aby__ 4bV _ 4v

M (bl2-b74b)  20P-b7 B2 b
Example 5.3. 4 capacitor consists of two similar square aluminium plates, each 10 cm X 10 cm
mounted parallel and opposite to each other. What is their capacitance in W\ F when distance
between them is 1 cm and the dielectric is air ? If the capacitor is given a charge of 500 uu C, what
will be the difference of potential between plates ? How will this be affected if the space between the
plates is filled with wax which has a relative permittivity of 4 ?

Solution. C = g,A4/d farad
Here g, = 8.854x 10 F/m; 4=10x 10=100 cm’=10"m’
= lem=10"m
—12 -2
c = 38x10 10 5854 1072 F = 8.854 puF
10
-12
Now c=2 . y=2 o y- 20010 C _ 565 vols.
4 ¢ 8.854x107 F

When wax is introduced, their capacitance is increased four times because
C =¢g,e,4/d F=4x8854=354uuF
The p.d. will obviously decrease to one fourth value because charge remains constant.
V = 56.5/4 =14.1 volts.
Example 5.4. The capacitance of a capacitor formed by two parallel metal plates each
200 cm’ in area separated by a dielectric 4 mm thick is 0.0004 microfarads. A p.d. of 20,000 V is
applied. Calculate () the total charge on the plates (b) the potential gradient in V/m (C) relative

permittivity of the dielectric (d) the electric flux density. (Elect. Engg. I Osmaina Univ.)
Solution. C =4x10*uF;V=2x10*V
(@) - Total charge 0 = CV=4x10"x2x10'uC=8puC=8x 10°C
(b) Potential gradient - dr_2x 10° =5% 10°V/m
dx  4x107
(© D = 0/4=8x% 10%200x 10*=4x 10* C/m*
(d) E = 5% 10°V/m
D 4x107*

=9

Since D=¢,¢,E .. g = = - 5
g XE 8854x107°x5x10
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Example 5.5. A4 parallel plate capacitor has 3 dielectrics with relative permittivities of 5.5, 2.2
and 1.5 respectively. The area of each plate is 100 cm’ and thickness of each dielectric 1 mm.
Calculate the stored charge in the capacitor when a potential difference of 5,000 V'is applied across
the composite capacitor so formed. Calculate the potential gradient developed in each dielectric of

the capacitor. (Elect. Engg. A.M.Ae.S.I.)
Solution. As seen from Art. 5.5,
-12 —4 _14
_ . 82114 - _ 8.854 >j310 >_<3(100 x_iO ) _ 8.8_534>< 10 =292 pF
4% 9% 10 +10 +10 1077 % 0.303
€, €, € 55 22 1.5

0 =CV=292x 10" x 5000 = 146 x 10 coulomb
D = 0/4=146 x 10%/(100 x 10™) =146 x 10° C/m’
g, = E =Dlgje, =146x 10%/8.854x 10" x 5.5=3x 10°V/m
g, = E,=Dlg,e,=75x 10°V/m; g, =D/g,e,,=11x 10°V/m
Example 5.6. An air capacitor has two parallel plates 10 cm % in area and 0.5 cm apart. When
a dielectric slab of area 10 cm’ and thickness 0.4 cm was inserted between the plates, one of the
plates has to be moved by 0.4 cm to restore the capacitance. What is the dielectric constant of the
slab ? (Elect. Technology, Hyderabad Univ. 1992 )
Solution. The capacitance in the first case is 0.5cm 0.4cm
¢ d 05x107 5
The capacitor, as it becomes in the second case, is shown in Fig.

5.13. The capacitance is ; AIR
c - gy XI10” £,
Zd/e [05x10 ] 5+4) —
81"
Si C, = O I NP Fig. 5.13
e « =y (5/e ey

Note. We may use the relation derived in Art. 5.5 (if)
Separation = (¢ —t/e;) .. 04=(0.5-05/,) or g, =5
Example 5.7. A4 parallel plate capacitor of area, A, and plate separation, d, has a voltage, V,,
applied by a battery. The battery is then disconnected and a dielectric slab of permittivity €, and
thickness, d,, (d; < d) is inserted. (a) Find the new voltage V, across the capacitor, (b) Find the
capacitance C,before and its value C, after the slab is introduced. (C) Find the ratio V,/V, and the
ratio C,/Cywhend, =d/2 and e, =4 ¢,
(Electromagnetic Fields and Waves AMIETE (New Scheme) June 1990)

€,4 4
Solution. (b) C, = —; C=7—7—""""
d [(d -d)  d, ]
+ 1
€ €
. 8¢, A
Sinced, =d/2ande, =4¢,.. C,= 4 -%%
d ., d 5d
(280 2x4¢, ]
(a) Since the capacitor charge remains the same
0=CV,=C v, ~ v =rpSo_yxfd, 3d 5V

°C, d “8e A 8
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8£0AX d
5d g A

(c) Asseenfromabove, V, = V,5/8;C, C,= %

Tutorial Problems No. 5.1

1. Two parallel plate capacitors have plates of an equal area, dielectrics of relative permittivities €, and
€, and plate spacing of d; and d,. Find the ratio of their capacitances if €,/¢,, =2 and d,/d, = 0.25.
[C,/C,=8]

2. A capacitor is made of two plates with an area of 11 cm” which are separated by a mica sheet 2 mm
thick. If for mica €, = 6, find its capacitance. If, now, one plate of the capacitor is moved further to give an air
gap 0.5 mm wide between the plates and mica, find the change in capacitance.

[29.19 pF, 11.6 pF]

3. A parallel-plate capacitor is made of two plane circular plates separated by d cm of air. When a
parallel-faced plane sheet of glass 2 mm thick is placed between the plates, the capacitance of the system is
increased by 50% of its initial value. What is the distance between the plates if the dielectric constant of the
glassis 6 ?

[0.5x 107 m]

4. A p.d. of 10 kV is applied to the terminals of a capacitor consisting of two circular plates, each
having an area of 100 cm’ separated by a dielectric 1 mm thick. If the capacitance is 3 x 10* W F, calculate
(a) the total electric flux in coulomb

(b) the electric flux density and
(c) the relative permittivity of the dielectric.
[(@3 x10*C (b) 3 x 10* pC/m* (c) 3.39]
5. Two slabs of material of dielectric strength 4 and 6 and of thickness 2 mm and 5 mm respectively are
inserted between the plates of a parallel-plate capacitor. Find by how much the distance between the plates

should be changed so as to restore the potential of the capacitor to its original value.
[5.67 mm)]

6. The oil dielectric to be used in a parallel-plate capacitor has a relative permittivity of 2.3 and the
maximum working potential gradient in the oil is not to exceed 10°V/m. Calculate the approximate plate area
required for a capacitance of 0.0003 p F, the maximum working voltage being 10,000 V.

[147 x 107 m?]

7. A capacitor consist of two metal plates, each 10 cm square placed parallel and 3 mm apart. The
space between the plates is occupied by a plate of insulating material 3 mm thick. The capacitor is charged to
300 V.

(a) the metal plates are isolated from the 300 V supply and the insulating plate is removed. What is
expected to happen to the voltage between the plates ?
(b) if the metal plates are moved to a distance of 6 mm apart, what is the further effect on the voltage
between them. Assume throughout that the insulation is perfect.
[300 €, ;600 €, ; where €, is the relative permittivity of the insulating material]

8. Anparallel-plate capacitor has an effecting plate area of 100 cm’ (each plate) separated by a dielectric
0.5 mm thick. Its capacitance is 442 pu F and it is raised to a potential differences of 10 kV. Calculate from
first principles
(a) potential gradient in the dielectric (b) electric flux density in the dielectric
(c) the relative permittivity of the dielectric material.
[(a) 20 kV/mm (b) 442 uC/mz(c) 2.5]

9. A parallel-plate capacitor with fixed dimensions has air as dielectric. It is connected to supply of p.d.
V volts and then isolated. The air is then replaced by a dielectric medium of relative permittivity 6. Calculate
the change in magnitude of each of the following quantities.
(a) the capacitance (b) the charge (c) the p.d. between the plates
(d) the displacement in the dielectric (e) the potential gradient in the dielectric.
[(@) 6 : 1 increase (b) no change (C) 6 : 1 decrease (d) no change (€) 6 : 1 decrease]
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5.8. Cylindrical Capacitor

A single-core cable or cylindrical capacitor consisting two
co-axial cylinders of radii @ and b metres, is shown in Fig. 5.14.
Let the charge per metre length of the cable on the outer surface
of the inner cylinder be + O coulomb and on the inner surface of
the outer cylinder be —Q coulomb. For all practical purposes,
the charge + O coulomb/metre on the surface of the inner cylin-
der can be supposed to be located along its axis. Let €, be the b
relative permittivity of the medium between the two cylinders.

The outer cylinder is earthed. e | |
Now, let us find the value of electric intensity at any point ATz
distant x metres from the axis of the inner cylinder. As shown in - - 41
Fig. 5.15, consider an imaginary co-axial cylinder of radius x ¥ _JQF: | : wl=
metres and length one metre between the two given cylinders. | H—l_+le —_l__
The electric field between the two cylinders is radial as shown. £ L B =
Total flux coming out radially from the curved surface of this T 1
imaginary cylinder is O coulomb. Area of the curved surface =2

Txx 1=2mxm?
Hence, the value of electric flux density on the surface of the
imaginary cylinder is
p = fluxin coulorr;b Y _Q0m2 -p= 2 o/m?
area in metre 4 4 2mx
The value of electric intensity is

E = D or E = LV/m
€ €, 2rme €, x
Now, dV = —F dx
or y - I”_E_dx:r_ﬂ
b b 2TEGE. X
= —Q dx _ —Q |10gx|Z

2neye. Jp x  2meye,

= =2 _(log,a~log,b)=—2 1oge(ﬂ)= 5 logE(ﬂ)

2me €, 2me €, b 2me €, b
2
Q _ 2mee, Lerbl:/m( loge(g):mmgm(g))
V" log, (2) 2.3 log,, (;) @ @

2neqe, !

2.3 log,, (2)

In case the capacitor has compound dielectric, the relation becomes
C = Znegl F
X log, (;)/ €,
The capacitance of 1 km length of the cable in i F can be found by putting / = 1 km in the above
expression.

The capacitance of / metre length of this cable is C = F

—12
2mx8.854x107 xe, x1000 . 0.024¢,

©- b
2.31og,, (;) log,, (5)

u F/km
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5.9. Potential Gradient in a Cylindrical Capacitor

It is seen from Art. 5.8 that in a cable capacitor

b E = _9 V/m
2mey e, x
| where x is the distance from cylinder axis to the point under consider-
A ation.
| I | g N E 0 V/ i
max = S = = .ee I
Lo o g g 2me €, X m ®
PN 2me e, V
I g0y From Art. 5.8, we find that V= 3 0 log, (2) or 0= 0—1;
Fig. 5.15 TE & N\ log, (—)
a
Substituting this value of QO in (7) above, we get
2 14
o= bneo g, V/m or g= v b Vim or g = %Volt/metre
log, (E)x2n80 €. X x log, (2) 2.3 x log,, (5)
Obviously, potential gradient varies inversely as x.
Minimum value of x = a, hence maximum value of potential gradient is
Gnx = ————x V/m ..(ii)
2.3 alog,, (5)
Similarly, g = —L———— V/m

2.3 blog,, (g)

Note. The above relation may be used to obtain most economical dimension while designing a cable. As
seen, greater the value of permissible maximum stress £, , smaller the cable may be for given value of V.

max>

However, E, _is dependent on the dielectric strength of the insulating material used.

> max

If V'and E,, . are fixed, then Eq. (ii) above may be written as

E = S /— a logh (2) - b _egp—gde
b a E a
alogh, (5) RS
For most economical cable db/da = 0
% = 0=E"+q4 (—k/az)ek/a or a=k=VIE,, and b=ae=2718a
a

Example 5.8. A4 cable is 300 km long and has a conductor of 0.5 cm in diameter with an
insulation covering of 0.4 cm thickness. Calculate the capacitance of the cable if relative permittiv-

ity of insulation is 4.5. (Elect. Engg. A.M.Ae. S.1.)
.024
Solution. Capacitance of a cable is C = L'Zr p F/km
g ¢ )
Here, a =0.5/2=025cm ;b=0.25+0.4=0.65cm ; b/a=0.65/0.25=2.6; loglzd6 =0415
c = 0024x45 _ ¢
0.415

Total capacitance for 300 km is =300 x 0.26 =78 L F.

Example 5.9. In a concentric cable capacitor, the diameters of the inner and outer cylinders
are 3 and 10 mm respectively. If €, for insulation is 3, find its capacitance per metre.

A p.d. of 600 volts is applied between the two conductors. Calculate the values of the electric
force and electric flux density : (@) at the surface of inner conductor (b) at the inner surface of outer
conductor.
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Solution. ¢ =1.5mm ;b=5mm; ~bla=5/1.5=10/3 ; log,, (1?0) =0.523
2 —-12
c = Lh% 2 - 2”825;)‘3%23 $3x1 1388 x 102 F = 138.8 pF
2.31og,, (;) =X 0.
(@ D = QRlna
Now O = CV=138.8% 107 x 600=8.33x 10” C
D = 833x 10%2nx 1.5x 10° =8.835 0 C/m’
E = Dleye,=332.6 V/m
-8
(by D = Mms(ymz =2.65uC/m*; E=Dle,e,=99.82 V/m.
2Tx5%10”

Example 5.10. The radius of the copper core of a single-core rubber-insulated cable is 2.25
mm. Calculate the radius of the lead sheath which covers the rubber insulation and the cable
capacitance per metre. A voltage of 10 kV may be applied between the core and the lead sheath with
a safety factor of 3. The rubber insulation has a relative permittivity of 4 and breakdown field
strength of 18 % 1 0° V/m.

%

Solution. AsshowninArt.5.9,g, = o
2.3 alog, (E)

Now, g, = E e = 18 % 10° V/m ; V = breakdown voltage x
Safety factor = 10* x 3 =30,000 V
-8 x 10° = 30,000 = - b5 lorb=2.1%225=4.72 mm
23%225%10 x log, (2) a
c - 2me, e,lb _ 2nx82.835;1><10‘2121><4x1 — 3x10°F
2.3logy, (5) 3log,, (2.1)

5.10. Capacitance Between Two Parallel Wires

This case is of practical importance in overhead trans-
mission lines. The simplest system is 2-wire system (either
d.c. or a.c.). In the case of a.c. system, if the transmission
line is long and voltage high, the charging current drawn by
the line due to the capacitance between conductors is appre-
ciable and affects its performance considerably.

With reference to Fig. 5.16, let
d = distance between centres of the wires 4 and B

r = radius (.)f each wire (<d) . A capictor can be charged by
O = charge in coulomb/metre of each wire* connecting it to a battery
Now, let us consider electric intensity at any point P .
between conductors 4 and B. @ —————— ————————

Electric intensity at P* due to charge + O coulomb/metre |__ X _,|‘d_ (dx) _.I

onA is [ {

*  Ifcharge on 4 is + Q, then on B will be —Q.
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0

= ——=—V/m
2me g, x ... towards B.
Electric intesity at P due to charge —Q coulomb/metre on B is
0
= —————V/
2mey €, (d—x) 1o ... towards B.
.. . Q 1 1
Total electric intensity at P, £ = -+
2re e, \x d-x

Hence, potential difference between the two wires is

d—r d—r
Vo= I E.dsz 1, 1 dx
r 2 TE)E, Jr x d-—x
Q d—r Q d-r
= ———|1 -1 d— =—1
14 2mogrlogex 0g, (d = x)|, nege 0%,
€, € €, € €, €
Now C=Q/W .-.C = T ((21 rr) = T O(gl 5= "% & _Fm (approx.)
log,~——= 23log,,~—= 231 (7)
08, 3 logy - 0810 {7,
. TEE,
The capacitance for a length of / metres C = T d\ F
2.3 log, (—)
p
The capacitance per kilometre is
854x107" 100x10°
c = 1x8.854x10 ~xg, x100x10 — L F/km
d\ 0.0121e
2.3log,, L= £

log,, (%)

Example 5.11. The conductors of a two-wire transmission line (4 km long) are spaced 45 cm
between centre. If each conductor has a diameter of 1.5 cm, calculate the capacitance of the line.

€, €
Solution. Formulaused C = #F

2.3logy, (%)

Here /= 4000 metres ; » =1.5/2cm ; d =45 cm ; €, = 1-for air ... d_ 4?22 =60
r .
—12
C = nx8.854x10 "~ x4000 — 0.0272x 10 F
2.3 log,, 60
0.0121
=4 — 0.
[or C log,, 60 0.0272puF]

5.11. Capacitors in Series
With reference of Fig. 5.17, let
C,, C,, C; = Capacitances of three capacitors
Vi, V5, V3 = p.ds. across three capacitors.
V' = applied voltage across combination
c

In series combination, charge on all capacitors is the same but p.d. across each is different.

combined or equivalent or joining capacitance.
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Vo= V+V,+V g,
. 2_0,0.0 A
C C] C2 C3 Q+| | Q+I | Q+| - .
1 1 1 1 | Al mi| =
or = = —+—=—+—= G G G Q, G
C Cl CZ C3 - V1 V2 V3 — ’
For a changing applied voltage, g
3
d_V — ﬂ + % + % 14 3V
dt dt  dt dt _ )
We can also find values of V|, V, and Fig. 5.17 Fig. 5.18
Vyinterms of V. Now, O=C, V,=C,V,=CV;=CV
where C = GGG - GGG
CGC+CC+CC ZCCG,
c G G
. ThEYE T R
GG C C
Similarl V., = V. dV.=y.—1=2
i 2 ¢ M hBTUYOq

5.12. Capacitors in Parallel
In this case, p.d. across each is the same but charge on each is different (Fig. 5.18).
0=0,t0,+0; or CV=CV+CV+CFV or C=C +C,+C;
For such a combination, dV/dt is the same for all capacitors.

Example 5.12. Find the Cey of the circuit shown in Fig. 5.19. All capacitances are in L F.
(Basic Circuit Analysis Osmania Univ. Jan./Feb. 1992)

Solution. Capacitance between Cand D=4+ 1||2=14/3 uF.

5 A 2, C ol Capacitance between 4 and B i.e. C, =3 +2 ||
o v 14/3=4.4nF
@ — —, —L_ _ Example5.13. Two capacitors of a capacitance
eq— — — —

4 UF and 2 UF respectively, are joined in series
with a battery of e.m.f. 100 V. The connections
o are broken and the like terminals of the capaci-
tors are then joined. Find the final charge on
each capacitor.
Solution. When joined in series, let /', and V, be the voltages across the capacitors. Then as
charge across each is the same.
4xy =2V, o V=2V, AlsoV,+V,=100
V,+2V, =100 s Vy=100/3V and V,=200/3V
0,=0,=(200/3) x 2= (400/3) u C
Total charge on both capacitors = 800/3 u C
When joined in parallel, a redistribution of charge takes place because both capacitors are re-
duced to a common potential V.
Total charge = 800/3 uw C; total capacitance=4+2 =6 uF
_ 800 _ 400
3x6 9

Fig. 5.19

volts
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Hence 0, = (400/9) x 4=1600/9=178 pC
0, = (400/9) x 2 =2800/9 =89 n C (approx.)
Example 5.14. Three capacitors A, B, C have capacitances 10, 50 and 25 \F respectively.
1011Q, Calculate (1) charge on each when connected in parallel to a 250 V

supply (i) total capacitance and (iii) p.d. across each when con-
nected in series. (Elect. Technology, Gwalior Univ.)

(@ 50_= | Solution. (7) Parallel connection is shown in Fig. 5.20 (a).
Q, Each capacitor has a p.d. of 250 V across it.

0,=CV=10x250=2500 nC; O, =50 x 250 =12,500 nC
2511Q, Q3: 25 x250=6,750 pn C.

(i) C=C,+C,+C;=10+50+25=85pF

(iii) Series connection is shown in Fig. 5.20 (b). Here charge on
G G each capacitor is the same and is equal to that on the equivalent

G
IQ ”Q I Q single capacitor.
) V1_'|" v, v, 1/C = 1/C,+ 1/C,+ 1/Cy ; C=25/4 nF

—0 250 Vo——

Q = CV=25x250/4=1562.5uF
250 V Q = CV,;V,=1562.5/10=156.25V
1562.5/25 = 62.5 V; V, = 1562.5/50 = 31.25 V.

Example 5.15. Find the charges on capacitors in Fig. 5.21 and the p.d. across them.

Fig. 5.20 v,

Solution. Equivalent capacitance between points 4 and B is

C,+Cy = 5+3=8uF |<7V24.|
Capacitance of the whole combination (Fig. 5.21) |_, v, "I Q | Icz
8x2 3pF
= l.6uF
€7 g MOM alle A | ser Jp
Charge on the combination is 2pF Q3I IC3
0, =CV=100x1.6=160 nC |, 100V |

|
| 1
y, =L 160 _gop.p —100-80=20V - |
¢ 2 Fig. 5.21
0, =CV,=3x10"x20=60 uC
0, =CyV,=5x10"%20=100 pC
Example 5.16. Two capacitors A and B are connected in series across a 100 V supply and it is
observed that the p.d.s. across them are 60 V and 40 V respectively. A capacitor of 2 UF capacitance

is now connected in parallel with A and the p.d. across B rises to 90 volts. Calculate the capacitance
of A and B in microfarads.

Solution. Let C, and C, W F be the capacitances of the two capacitors. Since they are connected

in series [Fig. 5.22 (a)], the charge across each is the same.
60C,=40C, or C,/C,=2/3 ()
In Fig. 5.22 (b) is shown a capacitor of 2 L F connected across capacitor 4. Their combined
capacitance = (C; +2) u F

- (C,+2)10 =90C, or C/C,=2/3 ..(i1)
Putting the value of C, = 3C,/2 from (i) in (ii) we get
C+2

3C1/2 =9 S Cl +2=13.5 Cl
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or C, = 2/124=0.16 p F and
C, = (32)x0.16 =024 u F

i
A B I
1S 1S & =
11 1 1A B
- 60V —fe—— 40V —> <— [0V —f«— 90V —>
-~ 100V ————— > -~ 100V —————»
(a) (b)

Fig. 5.22

Example 5.17. Three capacitors of 2 W F, 5 W F and 10 W F have breakdown voltage of 200 V,
500V and 100 V respectively. The capacitors are connected in series and the applied direct voltage
to the circuit is gradually increased. Which capacitor will breakdown first ? Determine the total
applied voltage and total energy stored at the point of breakdown. [Bombay Univeristy 2001]

P «——V,— Solution. C, of 2 uF, C, of 5 uF, and C; of 10 UF are connected
1 v, in series. If the equivalent single capacitor is C,
| ’:t{ |_ 1/C = 1/C, +1/C, + 1/C;, which gives C =125 pF
C, G, G, If V'is the applied voltage,
V, = VxCIC,=Vx(125/2)
+‘ v 1 = 62.5%ofV
Fig. 5.23 vV, = Vx(C/IC)=Cx(1.25/5)=25%ofV

8 V< (CICy) =V x(1.25/10)=12.5 % of V
If V=200 volts, "= 320 volts and V, = 80 volts, V' =40 volts.
It means that, first capacitor C, will breakdown first.
Energy stored = 1/2 CV* = 1/2 x 1.25 x 107 x 320 x 320 = 0.064 Joule
Example 5.18. A multiple plate capacitor has 10 plates, each of area 10 square cm and separation

between 2 plates is 1 mm with air as dielectric. Determine the energy stored when voltage of 100
volts is applied across the capacitor. [Bombay University 2001]

Solution. Number of plates, n =10

(n-1e, 9x8.854x107">x10x10™"
d 1x107°
1/2 % 79.7 x 1072 x 100 x 100 = 0.3985 pJ

Example 5.19. Determine the capacitance between the points A and B in figure 5.24 (a). All
capacitor values are in \F.

C =

=79.7 pF

Energy stored

©

25 \/\/20

Fig. 5.24 (a)
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Solution. Capacitances are being dealt with in this case. For simplifying this, Delta to star
transformation is necessary. Formulae for this transformation are known if we are dealing with resistors
or impedances. Same formulae are applicable to capacitors provided we are aware that capacitive
reactance is dependent on reciprocal of capacitance.

Further steps are given below :

C
25 \/ N 20
25 ¢ 80
P
o A ——20\N . N —ep
B D
10
40
10/\y\ 10
D
Fig. 5.24 (b) Fig. 5.24 (c)

Reciprocals of capacitances taken first :

Between B-C — 0.05, Between B-D — 0.10

Between C-D — 0.05, Sum of these three = 0.20

For this delta, star-transformation is done :

Between N-C : 0.05 x 0.05/0.20 = 0.0125, its reciprocal = 80 W F

Between N-B : 0.05 x 0.10/0.20 = 0.025, its reciprocal =40 u F

Between N-D : 0.05 x 0.10/0.20 = 0.025, its reciprocal =40 WL F

This is marked on Fig. 5.24 (c).

With series-parallel combination of capacitances, further simplification gives the final result.

Cp = 1613 U F

Note : Alternatively, with 4ADB as the vertices and C treated as the star point, star to delta transformation

can be done. The results so obtained agree with previous effective capacitance of 16.14 u F.

Example 5.20. (2) A capacitor of 10 pF is connected to a voltage source of 100 V. If the
distance between the capacitor plates is reduced to 50 % while it remains, connected to the 100 V
supply. Find the new values of charge, energy stored and potential as well as potential gradient.
Which of these quantities increased by reducing the distance and why ?

[Bombay University 2000]

Solution.
(i) C=10pF (ii) C =20 pF, distance halved
Charge = 1000 p Coul Charge = 2000 p-coul

Energy = 1/2 CV*=0.05u]  Energy=0.10pJ

Potential gradient in the second case will be twice of earlier value.

Example 5.20 (b). A4 capacitor 5 |\ F charged to 10 V is connected with another capacitor of
10 W F charged to 50V, so that the capacitors have one and the same voltage after connection. What
are the possible values of this common voltage ? [Bombay University 2000]
Solution. The clearer procedure is discussed here.

Initial charges held by the capacitors are represented by equivalent voltage sources in Fig. 5.25
(b). The circuit is simplified to that in Fig. 5.25 (c). This is the case of C, and C, connected in series
and excited by a 40-V source. If Cis the equivalent capacitance of this series-combination,

1/C = 1/C, +C,
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— S5 ><o s A B
Ji’ JJ' + Ve, + v
10V c 10 uf 50 V
Cl - 2 - Cl - CZ —
40V
1 X
Fig. 5.25 (a) Fig. 5.25 (¢) Simplification
.A B A A
* : L
Cr— C, 36.67 C,
X ve = G
VSI v Vsz 50V L
Fig. 5.25 (b). Initial charge represented by equiv-source Fig. 5.25 (d). Final condition
This gives C =3.33 uF
In Fig. (¢), Ve, = 40 x C/C, =40 x 3.33/5=26.67 volts

Vs, and V, are integral parts of C, and C, in Fig. 5.25 (¢),
Voltage across C, = 10 +26.67 = 36.67 (A w.r. to 0)
Voltage acorss C, = 50 —13.33 = 36.67, (B w.r. to 0)

Thus, the final voltage across the capacitor is 36.67 volts.

Note : If one of the initial voltages on the capacitors happens to be the opposite to the single equivalent
source voltage in Fig. 5.25 (¢) will be 60 volts. Proceeding similarly, with proper care about signs, the final
situation will be the common voltage will be 30 volts.

5.13. Cylindrical Capacitor with Compound Dielectric !;

™

Such a capacitor is shown in Fig. 5.26
Let r
r, = radius of inner dielectric €

radius of the core

.

ry = radius of outer dielectric € ,
Obviously, there are two capacitors joined in series.
Now

- 0.024 ¢, WF/km and C, = 0.024 ¢ , M
log,, (r/n) log,, (/1)
G& A cyclindrical

Total capacitance of the cable is C =
1+ G Capacitor
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Now for capacitors joined in series, charge is the same.

<
4

_ G _ g, logy (1)
I e T T
1 G, g, logy (n/n)

From this relation, V, and V| can be found,

4

in inner capacitor ————1
Emax £ 2,3 11 log (ry/r)

(Art. 5.9) LT

n

I
\ C 4_) 3
Similarly, g, .. for outer capacitor = ~—————=———

2,3 r, log,(13/1,)

Bomaz _ 4 . &)
Emar 237 logo(n/n) 2,31, log, (/1)

_ @x log,, (r3/ry) _ Gry % log,y (r3/ry) (. ﬂ=& ry
Vorp logyy (n/r) G logy, (/1) oG

Putting the values of C, and C,, we get

8max1 _ 0.024¢, log,, (15/1,) _n log,y /7). max1 _ €,

Fig. 5.26

0

Emax2 - 1°g10(’”3/’”2) 0.024 erl Uyl 1oglO (r2/rl) - Emax 2 Srl

7

Hence, voltage gradient is inversely proportional to the permittivity and the inner radius of the

insulating material.

Example 5.21. 4 single-core lead-sheathed cable, with a conductor diameter of 2 cm is designed
to withstand 66 kV. The dielectric consists of two layers A and B having relative permittivities of 3.5
and 3 respectively. The corresponding maximum permissible electrostatic stresses are 72 and
60 kV/ecm. Find the thicknesses of the two layers. (Power Systems-I, M.S. Univ. Baroda)

Solution. As seen from Art. 5.13.

Emax2 €11 60 3.5x1
Vi xy2

Emax 1 _€h.h 2: 3)(7"2 T r2:I,4CIl’1

Now, Gnax = W WAt 5.9
where V| is the r.m.s. values of the voltage across the first dielectric.
V, x~2
SN /2.5 R v, =17.1kV
23x1xlog,,1.4

Obviously, vV, = 60 —-17.1= 48.9 kV

V, x~2
Now, Coaxs = 2—\/— o 60= 48.9

max 2.3 1, log,, (/1) 2.3x1.41log,, (15/1,)
log,, (ry/r,) = 0.2531 = log,, (1.79) .. 5179 or r,=2.5cm

p)
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Thickness of first dielectric layer = 1.4 —1.0 = 0.4 cm.
Thickness of second layer = 2.5 —1.4 = 1.1 e¢m.

5.14. Insulation Resistance of a Cable Capacitor

In a cable capacitor, useful current flows along the axis of the core but there is always present
some leakage of current. This leakage is radial i.e. at right angles to the flow of useful current. The
dr resistance offered to this radial leakage of current is called
insulation resistance of the cable. If cable length is greater,
then leakage is also greater. It means that more current will
leak. In other words, insulation resistance is decreased.
Hence, we find that insulation resistance is inversely
proportional to the cable length. This insulation resistance
is not to be confused with conductor resistance which is
directly proportional to the cable length.

Consider 7 metre of a single-core cable of inner-radius 7,
and outer radius 7, (Fig. 5.27). Imagine an annular ring of
radius ‘7’ and radial thickness ‘dr’.

If resistivity of insulating material is p, then resistance of

the this narrow ring is dR =p_dr - pdr. ~Insulation
2mr x1 2wl

resistance of / metre length of cable is

i 2 pd 2
Fig. 5.27 J = Ir Ppar_ __P_ "
R n 21yl or R 2 rl | log, () |V1
23
R = 5hrlog, (r/n) =570 log, (/) ©

It should be noted

(1) that R is inversely proportional to the cable length

(ii) that R depends upon the ratio r/r, and NOT on the thickness of insulator itself.

Example 5.22. A liquid resistor consists of two concentric metal cylinders of diameters D = 35
cm and d = 20 cm respectively with water of specific resistance p = 8000  cm between them. The
length of both cylinders is 60 cm. Calculate the resistance of the liquid resistor.

(Elect. Engg. Aligarh Univ.,)

Solution. r,=10cm;r, = 17.5cm; log,,(1.75)=0.243

p= 8x10° Q- cm; /=60 cm.
3
Resistance of the liquid resistor R = 23x8x10° x0243=11.85Q.
21 x 60

Example 5.23. Two underground cables having conductor resistances of 0.7 Q and 0.5 and
insulation resistance of 300 M Qrespectively are joind (i) in series (1) in parallel. Find the resultant
conductor and insulation resistance. (Elect. Engineering, Calcutta Univ.)

Solution. (i) The conductor resistance will add like resistances in series. However, the leakage
resistances will decrease and would be given by the reciprocal relation.

Total conductor resistance = 0.7 + 0.5 =1.2 Q

If R is the combined leakage resistance, then

1__1, 1L . Rr=
=300 " g00 - R=200MQ
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(ii) In this case, conductor resistance is = 0.7 x 0.5/(0.7 + 0.5) = 0.3. Q (approx)
Insulation resistance = 300 + 600 =900 M Q
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Example 5.24. The insulation resistance of a kilometre of the cable having a conductor diameter
of 1.5 cm and an insulation thickness of 1.5 cm is 500 M Q. What would be the insulation resistance

if the thickness of the insulation were increased to 2.5 cm ?

(Communication Systems, Hyderadad Univ. 1992)

Solution. The insulation resistance of a cable is

23p
First Case R = mlogm (/1)

r,=152=075cm;r,=0.75+15=225cm

rylr, = 2.25/0.75 = 3 ; log,, (3) = 04771 . 500 :%x 0.4771

Second Case
r; =0.75 cm —as before r, = 0.75 + 2.5 = 3.25 cm

_24 ‘l’ % 0.6368

r/ry = 3.25/0.75 = 4.333 ; log,, (4.333) = 0.6368 .. R

Dividing Eq. (ii) by Eq. (i), we get

R _0.6368 . , _ -
500> 04771 R=500x%0.6368/0.4771=667.4 M Q

5.15. Energy Stored in a Capacitor

Charging of a capacitor always involves some ex-
penditure of energy by the charging agency. This energy
is stored up in the electrostatic field set up in the dielec-
tric medium. On discharging the capacitor, the field col-
lapses and the stored energy is released.

To begin with, when the capacitor is uncharged, little
work is done in transferring charge from one plate to
another. But further instalments of charge have to be
carried against the repulsive force due to the charge
already collected on the capacitor plates. Let us find the
energy spent in charging a capacitor of capacitance C to
avoltage V.

Suppose at any stage of charging, the p.d. across the
plates is v. By definition, it is equal to the work done in
shifting one coulomb from one plate to another. If ‘dg’
is charge next transferred, the work done is

dw = vdg
Now q=Cv .:.dq = Cdv .. dWw=Cvdv
Total work done in giving ¥ units of potential is
v 2 |
W= | cuv=c| | . w=gcp
0
0

2

If Cis in farads and Vis in volts, then W = % cr? joules =% QV joules = 2Q_C joules

If O is in coulombs and C is in farads, the energy stored is given in joules.

()

...(i)
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Note : As seen from above, energy stored in a capacitor is E :% cr?

Now, for a capacitor of plate area 4 m” and dielectric of thickness d metre, energy per unit volume of
dielectric medium.

1

2 2 2
e 1 4v. 1 ¥ E? EDE D?/2 joules/m“'

1
2 Add 2d Ad 2 d 2
1

It will be noted that the formula % DE is similar to the expression - stress x strain which is used for
calculating the mechanical energy stored per unit volume of a body subjected to elastic stress.

Example 5.25. Since a capacitor can store charge just like a lead-acid battery, it can be used at
least theoretically as an electrostatic battery. Calculate the capacitance of 12-V electrostatic battery
which the same capacity as a 40 Ah, 12 V lead-acid battery.

Solution. Capacity of the lead-acid battery = 40 Ah =40 x 36 As = 144000 Coulomb
Energy stored in the battery = OV = 144000 x 12 = 1.728 x 10°7

Energy stored in an electrostatic battery = % cr?
%><C><122 =1.728x10° . C=2.4x10* F=24kF

Example 5.26. A capacitor-type stored-energy welder is to deliver the same heat to a single
weld as a conventional welder that draws 20 kVA at 0.8 pf for 0.0625 second/weld. If C = 2000 UF,
find the voltage to which it is charged. (Power Electronics, A.M.LE. Sec B, 1993)

Solution. The energy supplied per weld in a conventional welder is

W = VA X cos ¢x time =20,000 x 0.8 x 0.0625=10001J

Now, energy stored in a capacitor is (1/2) C a

=1000 V

W - %CVzoer 2W=\/ 2x1000

C 2000%107°

Example 5.27. A4 parallel-plate capacitor is charged to 50 WC at 150 V. It is then connected to

another capacitor of capacitance 4 times the capacitance of the first capacitor. Find the loss of
energy. (Elect. Engg. Aligarh Univ.)

Solution. C, =50/150=1/3 uF; C, =4 x1/3=4/3 uF
Before Joining

E, = %CIVIZ :%x(%j 1070 x 150> =37.5%1074 1 £, =0

37.5x 107

Total energy
After Joining
When the two capacitors are connected in parallel, the charge of 50 L C gets redistributed and the
two capacitors come to a common potential V.
total charge 50 uC

" total capacitance  [(1/3) + (4/3)]u F =30V
E, = %><(1/3)><10*6 x30>=1.5x10"*J
E, = %><(4/3)><10*6 x30>=6.0x10"*J
Total energy = 75%x107J; Loss of energy = (37.5 -7.5) x 10%=3%x107J

The energy is wasted away as heat in the conductor connecting the two capacitors.

* It is similar to the expression for the energy stored per unit volume of a magnetic field.
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Example 5.28. An air-capacitor of capacitance 0.005 | F is connected to a direct voltage of
500V, is disconnected and then immersed in oil with a relative permittivity of 2.5. Find the energy
stored in the capacitor before and after immersion. (Elect. Technology : London Univ.)

Solution. Energy before immersion is
Ey = 3OV =1x0005x107°x500" = 625 x 10 3

When immersed in oil, its capacitance is increased 2.5 times. Since charge is constant, voltage
must become 2.5 times. Hence, new capacitances is 2.5 x 0.005 = 0.0125 pF and new voltage is
500/2.5 =200 V.

E, = %><0.0125><1o*6><(200)2 =250 x10°J

Example 5.29. A4 parallel-plate air capacitor is charged to 100 V. Its plate separation is 2 mm
and the area of each of its plate is 120 cm’.

Calculate and account for the increase or decrease of stored energy when plate separation is
reduced to 1 mm

(2) at constant voltage (b) at constant charge.

Solution. Capacitance is the first case

god  8.854x107"7 x120x10™*

d 2x1073

Capacitance in the second case i.e. with reduced spacing
8.854x10™"* x120x10™*

C, = =53.1x10"* F

C, = = =1062x10""* F
1x10
(@) When Voltage is Constant
Change in stored energy dE = % C2V2 % C1V2

_ %XIOOZ % (106.2—53.1)x 1072 = 26.55 x 10°° J

This represents an increase in the energy of the capacitor. This extra work has been done by the
external supply source because charge has to be given to the capacitor when its capacitance increases,

voltage remaining constant.
(b) When Charge Remains Constant
2 2
Energy in the first case E = 2 C 5 Energy in the second case, E, = g—
1 2

N [ —

. : Ll 1 1 12
change inenergyis dE = 2Q [53'1 106.2}(10 J

1 2of 1 1 12
S 76073 o S N NS\
2 (G (53.1 106.2)><
= %(53.1><10*12)2><1o“><o.oo94><1o12

= 13.3 x 107 joules

Hence, there is a decrease in the stored energy. The reason is that charge remaining constant,
when the capacitance is increased, then voltage must fall with a consequent decrease in stored energy

_1
(E=50P)
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Example 5.30. A point charge of 100 WC is embedded in an extensive mass of bakelite which
has a relative permittivity of 5. Calculate the total energy contained in the electric field outside a
radial distance of (1) 100 m (i1) 10 m (iii) I m and (V) 1 cm.

Solution. As per the Coulomb’s law, the electric field intensity at any distance x from the point
chargeis givenby E=Q/4n € x%. Letus draw a spherical shell of radius x as shown in Fig. Another
spherical shell of radius (x + dx) has also been drawn. A differential volume of the space enclosed
between the two shells is dv =4 T x” dx. As per Art. 5.15, the energy stored per unit volume of the
electric field is (1/2) DE. Hence, differential energy contained in the small volume is

1

2
1 1 . 2 (0] 2 Q2 dx
W = =DEdv==¢E " dv=—¢|—=— | 4 dx = ==
d > Y 28 Y 28[4758)62] Tx~ dx Sre 2

Total energy of the electric field extending from x = R to x = oois

0 ["rpe @ 0’
= < dx = =
v gnedr” T 8meR 8mwey e, R

(i) The energy contained in the electic field lying outside a radius of R =100 m is

1 10-6)2
W= 100x10_) =0.90J
8mx8.854x10" " x5x%x100

(i) ForR=10m, W=10x0.09=0.09J

(iii) ForR=1m, W=100x0.09=9J

(iv) ForR=1cm, W=10,000 x 0.09 =900 J

Example 5.31. Calculate the change in the stored energy of a parallel-plate capacitor if a

dielectric slab of relative permittivity 5 is introduced between its two plates.

Solution. Let A be the plate area, d the plate separation, £ the electric field intensity and D the
electric flux density of the capacitor. As per Art. 5.15, energy stored per unit volume of the field is
=(1/2) DE. Since the space volume is d x A, hence,

2
v,
W, = %DlEldi:%eoEfdi:%eodA(j]
When the dielectric slab is introduced,
2
_ Ip g xar=tertxai=Le e aa L2
Wy, = 5525 =585 =5&¢& dd| —
P 2

1 v, 1 Ny W
= Lee a4 Lo aa| | L w2
2 f0 & [srdj 2 o (d €, 2 e,

It is seen that the stored energy is reduced by a factor of ,. Hence, change in energy is

_ 1 1 4 . dw
dw = VVl_W2=VVl(1_8_J=VV1(1_§J=VV1X§ . 71= 0.8

.
Example 5.32. When a capacitor C charges through a resistor R from a d.c. source voltage E,
determine the energy appearing as heat. [Bombay University, 2000]

Solution. R-C series ciruit switched on to a d.c. source of voltage E, at ¢ = 0, results into a
current i (), given by

ity = (ER) ™
where t = RC
AW, = Energy appearing as heat in time A¢
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= P RAt
AWy, = Energy appearing as heat in time At
= PRAt
We = R[ it
0

R (E/R) J’ € =%CE2

0
Note : Energy stored by the capacitor at the end of charging process = 1/2 CE’
Hence, energy received from the source = CF.

5.16. Force of Attraction Between Oppositely-charged Plates

In Fig. 5.28 are shown two parallel conducting plates 4 and B A
carrying constant charges of + O and —Q coulombs respectively. Let
the force of attraction between the two be F' newtons. If one of the
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plates is pulled apart by distance dx, then work done is +
= F % dx joules ...(D) Q F F
Since the plate charges remain constant, no electrical energy comes
into the arrangement during the movement dx. +
Work done = change in stored energy .
Initial stored energy = % % joules | X -
. Fig. 5.28
If capacitance becomes (C —dC) due to the movement dx, then
. 100 10 1 10> . dc .
Final stored T - =— —-=1 = ifdC C
inal stored energy 2(C O 2 C ac 2 c |
C
10°(,.dc) 10°_10°
Change in stored energy = >C [1 + ?j— > C =2 F .dC ..(ii)
. : N 10
Equating Eq. (i) and (ii), we have Fdx = EF .dC
2
10" dC _1,2 dC
= =2 4 __lyps 4 Y=
F 2% dxe 2 dx (V=00
_ed  dc__ed
Now C= """ 2
2
F = —le.ﬁz—leA (Z) newtons=—leAE2 newtons
2 P 2 X 2

This represents the force between the plates of a parallel-plate capacitor charged to a p.d. of V'

volts. The negative sign shows that it is a force of attraction.

Example 5.33. A4 parallel-plate capacitor is made of plates 1 m square and has a separation of
1 mm. The space between the plates is filled with dielectric of €, = 25.0. If I k V potential difference

is applied to the plates, find the force squeezing the plates together.

(Electromagnetic Theory, A.M.LE. Sec B, 1993)

Solution. As seen from Art. 5.16, F=—(1/2) g, €, AE’ newton
Now E = V/d = 1000/1 x 10® = 10° V/m
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F=—%80 e AE’ =—%x8.854x10_12><25><1><(106)2 = 1LIx107*N

. Find the capacitance per unit length of a cylindrical capacitor of which the two conductors have radii

Tutorial Porblems No. 5.2

2.5 and 4.5 cm and dielectric consists of two layers whose cylinder of contact is 3.5 cm in radius, the
inner layer having a dielectric constant of 4 and the outer one of 6.

[440 pF/m]
A parallel-plate capacitor, having plates 100 cm’ area, has three dielectrics 1 mm each and of
permittivities 3, 4 and 6. If a peak voltage of 2,000 V is applied to the plates, calculate :

(a) potential gradient across each dielectric
(b) energy stored in each dielectric.
[8.89 kV/cm; 6.67 kV/em ; 4.44 kV/cm ; 1047, 786, 524 x 107 joule]

The core and lead-sheath of a single-core cable are separated by a rubber covering. The cross-
sectional area of the core is 16 mm”. A voltage of 10 kV is applied to the cable. What must be the
thickness of the rubber insulation if the electric field strength in it is not to exceed 6 X 10° V/m ?

[2.5 mm (approx)]
A circular conductor of 1 cm diameter is surrounded by a concentric conducting cylinder having an
inner diameter of 2.5 cm. If the maximum electric stress in the dielectric is 40 kV/cm, calculate the
potential difference between the conductors and also the minimum value of the electric stress.

[18.4kV ;16 kV/cm]
A multiple capacitor has parallel plates each of area 12 cm” and each separated by a mica sheet
0.2 mm thick. If dielectric constant for mica is 5, calculate the capacitance.
[265.6 puF]
A p.d. of 10kV is applied to the terminals of a capacitor of two circular plates each having an area of
100 sq. cm. separated by a dielectric 1 mm thick. If the capacitance is 3 x 10™ microfarad, calculate
the electric flux density and the relative permittivity of the dielectric.
[D=3x 107" C/m’, g = 3.39] (City & Guilds, London)
Each electrode of a capacitor of the electrolytic type has an area of 0.02 sq. metre. The relative
permittivity of the dielectric film is 2.8. If the capacitor has a capacitance of 10 UF, estimate the
thickness of the dielectric film. [4.95 x 107 m] (I.E.E. London)

5.17. Current-Voltage Relationships in a Capacitor

The charge on a capacitor is given by the expression Q = CV. By differentiating this relation, we

get

a9 _d _car
dt ~ dt n=c dt

i =

Following important facts can be deduced from the above relations :

0]
(i)
(iii)
(@iv)

since O = CV, it means that the voltage across a capacitor is proportional to charge, not the
current.

a capacitor has the ability to store charge and hence to provide a short of memory.
a capacitor can have a voltage across it even when there is no current flowing.

from i = ¢ dV/dt, it is clear that current in the capacitor is present only when voltage on it
changes with time. If dV/dt = 0 i.e. when its voltage is constant or for d.c. voltage, i = 0.
Hence, the capacitor behaves like an open circuit.
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(V) from i = C dV/dt, we have dV/dt = i/C. It shows that for a given value of (charge or dis-
charge) current 7, rate of change in voltage is inversely proportional to capacitance. Larger
the value of C, slower the rate of change in capacitive voltage. Also, capacitor voltage
cannot change instantaneously.

(vi) the above equation can be put as dv = IE .dt
t
Integrating the above, we get J.dv = % Ii .dt or dv= % J. idt
0

Example 5.34. The voltage across a 5 \F capacitor changes uniformly from 10to 70 Vin 5 ms.
Calculate (i) change in capacitor charge (i) charging current.

Solution. O =CV ~dO=C.dvVandi=C dv/dt
(i) AV =70-10=60V, - dO=5x60=300pC.
(ii) i = C.dVidt="5x60/5=60 mA

Example 5.35. An uncharged capacitor of 0.01 F is charged first by a current of 2 mA for 30
seconds and then by a current of 4 mA for 30 seconds. Find the final voltage in it.

Solution. Since the capacitor is initially uncharged, we will use the principle of Superposition.

% :Lfoleo—3 dr=100x2x107>x30=6V
17001 Jo '

30
v, = ﬁjo Ax107° . dr=100x4x107°x30=12V; & V=V, +V,=6+12=18 V
Example 5.36. The voltage across two series-connected 10 \\ F capacitors changes uniformly
from 30 to 150 V in 1 ms. Calculate the rate of change of voltage for (1) each capacitor and
(il) combination.
Solution. For series combination
G v G _w
¢G+¢C, 3 ¢g+¢ 3
VI3=303=10V;V,=2V/3=2x30/3=20V
150/3 =50 Vand V, =2 x 150/3 =100 V
dav, _(100-20) Vv

Vv, =V andV, =V.

When V=30V V,
When V=150V 7,
dv, (50-10)

i . —_— = -—-——= 4 k N =

OB dt 1 ms OKV; dt 1 ms B0KVIs
. v (150-30) _

(@ = Ims  120kVis

It is seen that dV/dt = dV /dt + dV,/dt.

5.18. Charging of a Capacitor

In Fig. 5.29. (@) is shown an arrangement by which a capacitor C may be charged through a high
resistance R from a battery of /' volts. The voltage across C can be measured by a suitable voltmeter.
When switch S is connected to terminal (a), C is charged but when it is connected to b, C is short
circuited through R and is thus discharged. As shown in Fig. 5.29. (b), switch S is shifted to a for
charging the capacitor for the battery. The voltage across C does not rise to V instantaneously but
builds up slowly i.e. exponentially and not linearly. Charging current i, is maximum at the start i.e.
when C is uncharged, then it decreases exponentially and finally ceases when p.d. across capacitor
plates becomes equal and opposite to the battery voltage V. At any instant during charging, let

v, = p.d. across C; i, = charging current
q = charge on capacitor plates
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Fig. 5.29
The applied voltage V' is always equal to the sum of :
(i) resistive drop (i, R) and (if) voltage across capacitor (v,)

V=1iR+v, ...()
Now P = %:%(C@:C% V=VC+CR% (i)
dv.,  dt
or Vv R
Integrating both sides, we get J.ﬂz—LJ.dt; solog, V—v )=—L+K ...(ii)
V—v, CR ¢ ¢ CR

where K is the constant of integration whose value can be found from initial known conditions. We
know that at the start of charging when =0, v, = 0.

Substituting these values in (iii), we getlog, V'=K

Hence, Eq. (iii) becomes log, (V' —v,.) = ;—Ig +log, V

V—v, -1 1 .
or log,. —~ @& =- x where A = CR = time constant
V—-v. _ - .
T‘ =™ or v.=V(l-e m‘) ..(Iv)

This gives variation with time of voltage across the capacitor plates and is shown in Fig. 5.27.(a)

____/7 ____________ Q _________________
|
/]
0.632V ———/L q
H /0 r
Ve // |
|
|
|
0 ' t o -t

(@) (b)
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(©
Fig. 5.30
Now v, = ¢/C and V=Q/C
Equation (iv) becomes < = Q (1-e ’/7”) L qg=0(1-¢ ’/7”) (V)
c c

We find that increase of charge, like growth of potential, follows an exponential law in which the
steady value is reached after infinite time (Fig. 5.30 b). Now, i, = dq/dt.
Differentiating both sides of Eq. (V), we get

ﬂ _ s _nd 4t 1_—t/x

Qi _CV o )
=%¢ TR (- O9=CVand A=CR)
i, = %.e_m” or i,=1, e ™ (Vi)

where /, = maximum current = V/R

Exponentially rising curves for v, and ¢ are shown in Fig. 5.30 (a) and () respectively.
Fig. 5.30 (¢) shows the curve for exponentially decreasing charging current. It should be particularly
noted that i, decreases in magnitude only but its direction of flow remains the same i.e. positive.

As charging continues, charging current decreases according to equation (vi) as shown in Fig.
5.30 (c¢). It becomes zero when ¢ = oo(though it is almost zero in about 5 time constants). Under
steady-state conditions, the circuit appears only as a capacitor which means it acts as an open-circuit.
Similarly, it can be proved that v, decreases from its initial maximum value of }'to zero exponentially
as given by the relation v, =V e,

5.19.Time Constant

(a) Just at the start of charging, p.d. across capacitor is zero, hence from (i7) putting v, = 0, we get

dv
V = CR—=
dt
s . e dv. vV oV
initial rate of rise of voltage across the capacitor is* =| —< =—— = volt/second
da ) _, CR A

If this rate of rise were maintained, then time taken to reach voltage 7 would have been
V+ VICR = CR. This time is known as time constant (A) of the circuit.

* It can also be found by differentiating Eq. (iv) with respect to time and then putting # = 0.
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Hence, time constant of an R-C circuit is defined as the time during which voltage across ca-
pacitor would have reached its maximum value V had it maintained its initial rate of rise.
(b) In equation (iv) if #= A, then
1

— i\ — /A =il 1
v,=V(1-e™=V(1-e™)=Vl-e )=V(1—;)=V(l—m)= 0.632V

Hence, time constant may be defined as the time during which capacitor voltage actually rises
to 0.632 of its final steady value.
(c) From equaiton (vi), by putting ¢ = A, we get
i =Le=1e"=1/2718= 0371,

Hence, the constant of a circuit is also the time during which the charging current falls to 0.37
of its initial maximum value (or falls by 0.632 of its initial value).

5.20. Discharging of a Capacitor

As shown in Fig. 5.31 (a), when §is shifted to b, C is discharged through R. It will be seen that
the discharging current flows in a direction opposite to that the charging current as shown in Fig.
5.31(b). Hence, if the direction of the charging current is taken positive, then that of the discharging
current will be taken as negative. To begin with, the discharge current is maximum but then decreases
exponentially till it ceases when capacitor is fully discharged.

\%
©
a S R V@
°© ——WW +H— T
Ic
b
Ly 0 t
T A@ icl
To
(@) (b)
Fig. 5.31
Since battery is cut of the circuit, therefore, by putting /= 0 in equation (ii) of Art. 5.18, we get
dv dv . dv,
0= CR—S v orv, CR—< [ l”_cdt]
dv, dt dv, 1 t
= — < —— dt 1 — k
v, ~R” v Cr %8 Y CR

At the start of discharge, whent=0,v, =V log, V=0+K ; orlog, V=K
Putting this value above, we get

log, v, = —%Jr log, V or log, v/V =—t/A
v
or 70 = ™ or v, = ve ™
Similarly, g=0e¢™ and i =-1¢™
It can be proved that
ve = =V e

The fall of capacitor potential and its discharging current are shown in Fig. 5.32 (b).
One practical application of the above charging and discharging of a capacitor is found in digital



control circuits where a square-wave input is applied across an
R-C circuit as shown in Fig. 5.32 (a). The different waveforms
of the current and voltages are shown in Fig. 5.32 (b), (¢), (d),
(e). The sharp voltage pulses of V, are used for control
circuits.

Example 5.37. Calculate the current in and voltage drop
across each element of the circuit shown in Fig. 5.33 (a) after
switch S has been closed long enough for steady-state
conditions to prevail.

Also, calculate voltage drop across the capacitor and the
discharge current at the instant when S is opened.

Solution. Under steady-state conditions, the capacitor be-
comes fully charged and draws no current. In fact, it acts like
an open circuit with the result that no current flows through the
1-Qresistor. The steady state current /¢ flows through loop
ABCD only.

Hence, I = 100/(6 +4)=10 A

Drop Ve 100 x 6/(6 +4) =60 V
100 x 4/10=40 V

Vi, =0x2=0V
Voltage across the capacitor =drop across B —-C =40V

N
Il

INPUT

(b)

(c)

(d) i=i C

(e)
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(@)

(=}

Tioov W Ti00v

Fig. 5.33
Switch Open

When S is opened, the charged capacitor discharges through the loop BCFE as shown in Fig.

5.33 (b). The discharge current is given by
I, = 40/(4+1)=8A
As seen, it flows in a direction opposite to that of /.

Example 5.38. (a) 4 capacitor is charged through a large non-reactive resistance by a battery

of constant voltage V. Derive an expression for the instantaneous charge on the capacitor.

(b) For the above arrangement, if the capacitor has a capacitance of 10 WF and the resistance
is I M € calculate the time taken for the capacitor to receive 90% of its final charge. Also, draw the

charge/time curve.

Solution. (a) For this part, please refer to Art. 5.18.
(b) A=CR=10x10°x1x10°=105;4=09 0

Now,g=0 (1 - ~090=00-"%ore=10

0.1tlog,e=1log,10 or 0.1¢=231log,,10=2.3

or

t=23s
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The charge/time curve is similar to that shown in Fig. 5.27 (b).

Example 5.39. A resistance R and a 4 \F’ capacitor are connected in series across a 200 V. d.c.
supply. Across the capacitor is a neon lamp that strikes (glows) at 120 V. Calculate the value of R to
make the lamp strike (glow) 5 seconds after the switch has been closed.

(Electrotechnics-I.M.S. Univ. Baroda)

Solution. Obviously, the capacitor voltage has to rise 120 V in 5 seconds.
120=200 (1 - or ™ =25 or A=5.464 second.
Now, A=CR . R=5464/4x10°= 1366 MQ

Example 5.40. A capacitor of 0.1 UF is charged from a 100-V battery through a series resis-
tance of 1,000 ohms. Find

() the time for the capacitor to receive 63.2 % of its final charge.
(b) the charge received in this time (C) the final rate of charging.
(d) the rate of charging when the charge is 63.2% of the final charge.

(Elect. Engineering, Bombay Univ.)

Solution. (a) As seen from Art. 5.18 (b), 63.2% of charge is received in a time equal to the time
constant of the circuit.
Time required =A = CR = 0.1 x 107 x 1000 = 0.1 x 10> = 10~ second
(b) Final charge, 0= CV=0.1 x 100=10 pC
Charge received during this time is = 0.632 x 10 =6.32 n C
(c) The rate of charging at any time is given by Eq. (i7) of Art. 5.18.
dv V—v

dt  CR

% 14 100
Initiall =0,Hence —— = —5=~————F 3
v dt — CR™ 0.1x10 °x10°

=10°V/s

(d) Here v = 0.632V=0.632x 100 = 632 volts
100 - 63.2
dv _ 10-032 _ 368kvis
dt 10

Example 5.41. A4 series combination having R =2 M Qand C = 0.01 UF is connected across a
d.c. voltage source of 50 V. Determine

(@) capacitor voltage after 0.02 s, 0.04 s, 0.06 s and 1 hour

(b) charging current after 0.02 s, 0.04 s, 0.06 s and 0.1 s.

Solution. A = CR=2x10°x0.01 x 10°=0.02 second
I = V/R=50/2x10°=25 pA.
While solving this question, it should be remembered that (i) in each time constant, v, increases
further by 63.2% of its balance value and (ii) in each constant, i decreases to 37% its previous value.
@ (1))t=10.02s

Since, initially at t

0,v.=0Vand V,= 50V, hence, in one time constant
0.632 (50 -0) =31.6 V

VC
(i) t=0.04s
This time equals two time-constants.
v, = 31.6 +0.632 (50 -31.6) =43.2 V
(iii) t=10.06 s
This time equals three time-constants.
: v, = 432+0.632(50-43.2)=47.5V
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Since in one hour, steady-state conditions would be established, v, would have achieved its
maximum possible value of 50 V.

(b) @) t=0.02s, i, = 037x25=9.25pA
(i) t=04s, i, = 037x925=34pA
(i) t=0.06s, i = 037x34=1.26pA

(iv) t=0.1s, This time equals 5 time constants. In this time, current falls almost to zero
value.

Example 5.42. A voltage as shown in Fig. 5.43 (a) is applied to a series circuit consisting of a
resistance of 2 Qin series with a pure capacitor of 100 UF. Determine the voltage across the capacitor

at t = 0.5 millisecond. [Bombay University, 2000]
10V
1
0 0.2 0.4 0.6 ¢ (milli sec)
Fig. 5.34 (a)
Solution.
------- 10 10F=========7|7.18

2.325
A B €
(0)
0.2 0.4 0.6t (milli sec)
t —» (msec)
Fig. 5.34 (b)

T =RC=0.2 milli-second

Between 0 and 0.2 m sec;

v (1) =10 [1 —exp (—t/1)]

Att=0.2,v (f)=6.32 volts

Between 0.2 and 0.4 m Sec, counting time from A indicating it as 7,

v(t)=6.32exp (/1)

Atpoint B,t, =02, V=2.325

Between 0.4 and 0.6 m Sec, time is counted from B with variable as z,,
v(t) = 2.325+ (10 —=2.325) [1 —exp (=t,/T)]

At C, t, = 0.2, V="7.716 volts.

5.21. Transient Relations During Capacitor Charging Cycle

Whenever a circuit goes from one steady-state condition to another steady-state condition, it
passes through a transient state which is of short duration. The first steady-state condition is called
the initial condition and the second steady-state condition is called the final condition. In fact,
transient condition lies in between the initial and final conditions. For example, when switch S'in Fig.
5.35 (a) is not connected either to @ or b, the RC circuit is in its initial steady state with no current and
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hence no voltage drops. When S is shifted to point a, current starts flowing through R and hence,
transient voltages are developed across R and C till they achieve their final steady values. The period
during which current and voltage changes take place is called transient condition.

The moment switch S'is shifted to point ‘a’ as shown in Fig. 5.35 (b), a charging current i, is set
up which starts charging C that is initially uncharged. At the beginning of the transient state, 7, is
maximum because there is no potential across C to oppose the applied voltage V. It has maximum
value = V/R = I,. It produces maximum voltage drop across R=i_.R = [ R. Also, initially, v, = 0, but
as time passes, i, decreases gradually so does v, but v, increases exponentially till it reaches the final
steady value of V. Although V'is constant, v, and v, are variable. However, at any time V'=v,+v_ =
iR+v,.

At the beginning of the transient state, i, =/, v, = 0 but v, = V. At the end of the transient state,
i,=0hence, v, =0butv, =V.

l\/é /L_ (dvc/dv)t: 0 fch
/
B e ———— I,
/
/
/
/
/ .
/ (dic [dv)—g
/
/
0 >t 0 \ t
(a) ()
The initial rates of change of v, v, and i, are given A\
by
v, = Kvolt/second,
at ) _, A
dvy I, R 124
— = —— =——-volt/second
[ a ) _, A A
di I 1%
e T _r
[ al_, = % where /, R
These are the initial rates of change. However, their 0 : © ;

rate of change at any time during the charging transient
are given as under :
dv,
dt
It is shown in Fig. 5.35 (¢).
It should be clearly understood that a negative rate of change means a decreasing rate of change.
It does not mean that the concerned quantity has reversed its direction.

—t/x,ﬂ__ dvy __Ke—t/x

_r,
A > dt dt A

5.22. Transient Relations During Capacitor Discharging Cycle

As shown in Fig. 5.36 (), switch S has been shifted to b. Hence, the capacitor undergoes the
discharge cycle. Just before the transient state starts, 7, = 0, v, = 0 and v, = V. The moment transient
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state begins, i, has maximum value and decreases exponentially to zero at the end of the transient
state. So doesv,.. However, during discharge, all rates of change have polarity opposite to that during
charge. For example, dv /dt has a positive rate of change during charging and negative rate of change
during discharging.

[ ich

p o

(dve/dt)=o

L .

I‘— A —'I (a) @)

()

Fig. 5.36

Also, it should be noted that during discharge, v, maintains its original polarity whereas i reverses
its direction of flow. Consequently, during capacitor discharge, v, also reverses its direction.

The various rates of change at any time during the discharge transients are as given in Art.
dvc _ Vo —un . dic _i — 1\, dVR :Z e—t/x

dt KE A TS A
These are represented by the curves of Fig. 5.32.

5.23. Charging and Discharging of a capacitor with Initial Charge

In Art. 5.18, we considered the case when the capacitor was initially uncharged and hence, had
no voltage across it. Let us now consider the case, when the capacitor has an initial potential of V|,
(less than V) which opposes the applied battery voltage V" as shown in Fig. 5.37 (a).

As seen from Fig. 5.37 (b), the initial rate of rise of v, is now somewhat less than when the
capacitor is initially uncharged. Since the capacitor voltage rises from an initial value of v to the
final value of 7 in one time constant, its initial rate of rise is given by

[d_J VN V-V
) _,

A RC
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Vol e e e e e e — &
\ c -

o S V. | £ t |
t=0 o |
|

|

@) Y, i

|

|

i
<

0 — ¢
(a) - (b)
Fig. 5.37
The value of the capacitor voltage at any time during the charging cycle is given by
v, = (V=Vy)(l-e™) + v,

-V

(a)

Fig. 5.38

However, as shown in Fig. 5.38 (a), if the initial capacitor voltage is negative with respect to the
battery voltage i.e. the capacitor voltage is series aiding the battery voltage, rate of change of v, is
steeper than in the previous case. It is so because as shown in Fig. 5.38 (b), in one time period, the
voltage change = V' —(=V) = (V+ V). Hence, the initial rate of change of voltage is given by

dv, _ VA VAR
dr ) _, A RC

The value of capacitor voltage at any time during the charging cycle is given by
v, = (V+ V) (1 =™ -¥,
The time required for the capacitor voltage to attain any value of v, during the charging cycle is
given by

= a0 rem| Lo ... when ¥ is positive
V—v, V—v,
V+V V+V . .

t = A O |=RCIn 0 ... When V, is negative
V—v, V—v,

Example 5.43. In Fig. 5.39, the capacitor is initially uncharged and the switch S is then closed.
Find the values of I, I, 1, and the voltage at the point A at the start and finish of the transient state.
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Solution. At the moment of closing the o/ R [
switch i.e. at the start of the transient state, the S
capacitor acts as a short-circuit. Hence, there
is only a resistance of 2 Qin the circuit because
1 Qresistance is shorted out thereby grounding ~— 12V A
point A. Hence, I, = 0; [ =1, = 12/2 = 6A.
Obviously, ¥, =0 V. % ! = ONF

At the end of the transient state, the ca- | L
pacitor acts as an open-circuit. Hence,

I, =0 and/=1,=12/2 + 1) Fig. 5.39
=4A. V,=6V.

Example 5.44. Calculate the values of i,, i5, v, v;, v, v, and v, of the network shown in Fig.
5.40 at the following times :

(1) At time, t = 0 + immediately after the switch S is closed ;

(ii) At time, t —» i.e. in the steady state.  (Network Analysis AMIE Sec. B Winter 1990)

1 12

Solution. (i) In this case the coil acts as an open

ogo . 2 circuit, hence i, = 0; v, =0 and v, =20 V.
} i Since a capacitor acts as a short circuit iy = 20/(5 + 4)
v Vs =9=20/9 A. Hence, v;=(20/9) x4=80/9 Vandv,=0.
%5 %7 “ (i) Under steady state conditions, capacitor acts as
an open circuit and coil as a short circuit. Hence, i, =20/
(5+7)=20/12=5/3A; v,=7x5/3=35/3V;v, =0.
— 20V v, QH —— Alsoi;=0,v;=0butv,=20V.
3F |V Example 5.45. [f in the RC circuit of Fig. 5.36;
R=2MQ C=5mFand V=100V, calculate
Fig.‘5. 40 (a) initial rate of change of capacitor voltage

(b) initial rate of change of capacitor current
(C) initial rate of change of voltage across the 2 M Qresistor
(d) all of the above at t = 80 s.

av 4 100 100
Solution. (a . = = == 10V/s
@ [df A 2 10° 5 10°¢ 10
di I 6
A _ I, wrR 1002 10
(b) ( il - T T s
dvi V100
©) (dt . T -10 V/s

(d) All the above rates of change would be zero because the transient disappears after about
5A=5x10=50s.

Example 5.46. In Fig. 5.41 (a), the capacitor C is fully discharged, since the switch is in
position 2. At time t = 0, the switch is shifted to position [ for 2 seconds. It is then returned to
position 2 where it remains indefinitely. Calculate

(@) the maximum voltage to which the capacitor is charged when in position 1.
(b) charging time constant A, in position 1.

(c) discharging time constant A, in position 2.

(d) v.and i, at the end of 1 second in position 1.
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(€) v.andi, at the instant the switch is shifted to positon 2 at t = I second.

() v.and i, after a lapse of 1 second when in position 2.

(9) sketch the waveforms for v, and i, for the first 2 seconds of the above switching sequence.

Solution. (a) We will first find the voltage available at terminal 1. As seen the net battery
voltage around the circuit = 40 —10 = 30 V. Drop across 30 K resistor = 30 % 30/(30 + 60) = 10 V.

Hence, potential of terminal 1 with respect to ground G =40 —10 = 30 V. Hence, capacitor will
charge to a maximum voltage of 30 V when in position 1.

(b) Total resistance, R=[(30 K || 60 K) + 10 K]=30K
A =RC=30Kx10uF=03s
©) A=10Kx10uF=0.1s
@ ve=V(1-™)=30(1-"% =289V
_V -m _30V

. —1/0.03
lc—Re me =1x0.0361=0.036 mA

(e) v-=28.9 Vatr=1"S at position 2 but i. = 28.9 V/I0 K =-2/89 mA at /= 1"s in position 2.
() ve=289¢"=289¢""1=0.0013V=0V.

i.=289¢ "™ =-289¢"""=0.00013mA = 0.

The waveform of the capacitor voltage and charging current are sketched in Fig. 5.41 (b).

40V _—

1

(@ .
30V — §60K

(a)
Ve
P \‘0.036 mA
30V 0 '

t(s)

1 1
0 1 2 () ~2.89 mA
(b) (©)

Fig. 5.41
Example 5.47. In the RC circuit of Fig. 5.42, R =2 M Qand C = 5 WF, the capacitor is charged
to an initial potential of 50 V. When the switch is closed at t = 0+, calculate
(a) initial rate of change of capacitor voltage and

(b) capacitor voltage after a lapse of 5 times the time constant i.e. S\.
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If the polarity of capacitor voltage is reversed, s R 50V
calculate o7<o AN * I I =
(C) the values of the above quantities and 0 C
(d) time for v, to reach =10V, 0 V and 95 V.
. v, v, —— 100V
Solution. (a) (7 l_o = x
V=V, 100-50
RC 10
O ve=(V-V) A -+ 7V, Fig. 5.42
= (100 =50) (1= "% =50=49.7+50=99.7 V
dch V=V _V+V, 150
=0

d 7 o 10 BV

ve = (V=Vy) (1 =™ + ¥, = [100 =(=50)] (1 —¢) + (=50)
150 (1 —€”) =50 = 99 V..

=5V/s ic
—t/\

(c) When Ve = —SOV,[

B Vv, 100 - (- 50)] 150 \
(d) t = kln[V_ Cj—lOln[—100_(_10)}—10111(—110)— 3.1s
100 — (- 50) 150
= 1040 |2 0= 0 g4, [ 1501 4 gs5
! ”[ 100 - (0) } ”(100] ;
B 100 - (=50)] 150 )
t = 10111[—100_95 }—101"[_5 ]_ 345

Example 5.48. The uncharged capacitor, if it is
initially switched to position 1 of the switch for 2 sec o \?2
and then switched to position 2 for the next two sec-
onds. What will be the voltage on the capacitor at
the end of this period ? Sketch the variation of volt-

age across the capacitor.[Bombay University 2001] + :E o

NN,

Solution. Uncharged capacitor is switched to 100V 7]
position 1 for 2 seconds. It will be charged to 100
volts instantaneously since resistance is not present
in the charging circuit. After 2 seconds, the capacitor
charged to 100 volts will get discharged through R-C
circuit with a time constant of

T = RC=1500 x 10® = 1.5 sec.

Counting time from instant of switching over to positon 2, the expression for voltage across the
capacitor is V' (¢) = 100 exp (-#/1)

After 2 seconds in this position,

v () = 100 exp (-2/1.5) = 26/36 Volts.

Example 5.49. There are three passive elements in the circuit below and a voltage and a cur-

rent are defined for each. Find the values of these six qualities at botht = 0 and t = 0.
[Bombay University, 2001]

Solution. Current source 4 u () means a step function of 4 amp applied at t = 0. Other current
source of 5 amp is operative throughout.

Att=0, 5 amp source is operative. This unidirectional constant current establishes a steady
current of 5 amp through 30-ohm resistor and 3-H inductor. Note that positive }, means a rise from
right to left.

Fig. 5.43
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At t =20
Vi = —150 Volts (Since right-terminal of Resistor is + ve)
i;, = 5amp
V, = 0,itrepresents the voltage between B and O.
ir =0
Ve = 150 volts = V', + (Voltage between 4 and B with due regards to sign).
= 0 —(—150) =+ 150 volts
30 Q A
— MWW\ —
i Vi
+ i,
vV, S3H i A
127 F
_ —TV¢
41 (DA l -
O
Fig. 5.44 (a)

At t=0,, 4 amp step function becomes operative. Capacitive-voltage and Inductance-current
cannot change abruptly.

Hence i, (0" =5 amp

VA0,) =150 amp

VA0,) =150 volts, with node 4 positive with respect to 0.

With these two values known, the waveforms for current sources are drawn in Fig. 5.44 (b).

B w35
150V
5 amp 1 amp
4 amp
4 u (t)amp ﬁ:| IL, 1 |:T:|
1/27F C
(6] 4 u (tjamp 5 amp 5 amp
time, t ————» 4 amp
Fig. 5.44 (b) Fig. 5.44 (c)

Remaining four parameters are evaluated from Fig. 5.44 (¢).

V,=Vy=V,~30x 1)=120 Volts

i =1 amp, V, =30 Volts

i =4 amp in downward direction.

Additional Observation. After 4 amp source is operative, final conditions (at ¢ tending to
infinity) are as follows.

Inductance carries a total direct current of 9 amp, with V, = 0.
Hence, Vg = 0.

iy 5 amp, V', =—150 volts
Ve = 150 volts, i =0
Example 5.50. The voltage as shown in Fig. 5.45 (a) is applied across —(i) A resistor of 2 ohms
(i) A capacitor of 2 F. Find and sketch the current in each case up to 6 seconds.
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10
(VOlt) : :
o439
123 time, t (sec)
10
(Volt) f---=----------
Fig. 5.45 (a)
[Bombay University 1998]
Solution.

time, t (sec)

Fig. 5.45 (b) Current in a Resistor of 2 ohms iz = V (f)/2 amp

20
(Volt)
i, (amp) 2 3 4
1 T T T
5 6
20 (sec)
(Volt) - ----

Fig. 5.45 (c) Current thro 2-F capacitor, i, = C (dv/dl)

Example 5.51. Three capacitors 2 uF, 3 uF, and 5 uF are connected in series and charged from
a 900 V d.c. supply. Find the voltage across condensers. They are then disconnected from the
supply and reconnected with all the + ve plates connected together and all the ve plates connected

together. Find the voltages across the combinations and the charge on each capacitor after
reconnections. Assume perfect insulation. [Bombay University, 1998]

Solution. The capacitors are connected in series. If C is the resultant capacitance.
I/C = I/C, +1/C, = 1/C;, which gives C = (30/31) pF

= 900 x (30/31)/2=435.5 volts

900 x (30/31)/3=290.3 volts

900 x (30/31)/5=174.2 volts

SN
Il
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B A
[ — | I
C, 2 puf C, 3uf C, Suf
«—V, ———— «—V,
V2
/\Vs
Y oo v
Fig. 5.46

In series connection, charge held by each capacitor is same. If it is denoted by Q.
O = 435x 2x 10°=871 p coulombs

Three capacitors hold a total charge of (3 x 871)=2613 u coulombs
With parallel connection of these three capacitors, equlvalent capa01tance C=C+C,+C=10pF
Since, QO = (C,2613x 10°=10x 10°% »
or > = 261 volts.
Charge on each capacitor after reconnection is as follows

0 = CV=2x 10 X 261 =522 p-coulombs

0, C V =3X 10 X 261 =783 n-coulombs

0y C V =5x 10°x 261 =1305 p-coulombs

Tutorial Problems No. 5.3

1. For the circuit shown in Fig. 5.47 calculate (i) equivalent capacitance and (i7) voltage drop across
each capacitor. All capacitance values are in pF.
[(i) 6 puF (i) Vog =50V, Vg =40 V]
2. In the circuit of Fig. 5.48 find (i) equivalent capacitance (i7) drop across each capacitor and
(iif) charge on each capacitor. All capacitance values are in puF.
[(i) 1.82 pF (i) V, =50 V; V,=V,=20V; V,=40 V
(iii) Q; =200 nC; Q, =160 pC; Q; =40 nC; Q, =200 pC]j

5
ENE R
B |— i
10
fi[s 1]
100 v 110V

Fig. 5.47 Fig. 5.48 Fig. 5.49 Fig. 5.50

3. With switch in Fig. 5.49 closed and steady-state conditions established, calculate (i) steady-state
current (ii) voltage and charge across capacitor (iii) what would be the discharge current at the instant
of opening the switch ?

[(i) 1.5 mA (ii) 9V; 270 nC (iii) 1.5 mA]

4. When the circuit of Fig. 5.50 is in steady state, what would be the p.d. across the capacitor ? Also,
find the discharge current at the instant S is opened.

[8V; 1.8 A]
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Find the time constant of the circuit shown in Fig. 5.51. [200 pnS]
A capacitor of capacitance 0.01 pF is being charged by 1000 V d.c. 1K

supply through a resistor of 0.01 megaohm. Determine the voltage

to which the capacitor has been charged when the charging current

has decreased to 90 % of its initial value. Find also the time taken 0.1pF 2K
for the current to decrease to 90% of its initial value.
[100 V, 0.1056 ms] ]
Fig. 5.51

An 8 pF capacitor is being charged by a 400 V supply through 0.1
mega-ohm resistor. How long will it take the capacitor to develop a p.d. of 300 V ? Also what
fraction of the final energy is stored in the capacitor ? [1.11 Second, 56.3% of full energy]
An 10 pF capacitor is charged from a 200 V battery 250 times/second and completely discharged
through a 5 Q resistor during the interval between charges. Determine
(a) the power taken from the battery.
(b) the average value of the current in 5 €2 resistor. [(2) 50 W (b) 0.5 A]
When a capacitor, charged to a p.d. of 400 V, is connected to a voltmeter having a resistance of
25 MQ, the voltmeter reading is observed to have fallen to 50 V at the end of an interval of 2 minutes.
Find the capacitance of the capacitor. [2.31 uF] (App. Elect. London Univ.)
A capacitor and a resistor are connected in series with a d.c. source of V volts. Derive an expression
for the voltage across the capacitor after ‘#” seconds during discharging.
(Gujrat University, Summer 2003)

Derive an expression for the equivalent capacitance of a group of capacitors when they are connected
(7) in parallel (i) in series. (Gujrat University, Summer 2003)
The total capacitance of two capacitors is 0.03 pF when joined in series and 0.16 pF when connected
in parallel. Calculate the capacitance of each capacitor.  (Gujrat University, Summer 2003)
In a capacitor with two plates separated by an insulator 3mm thick and of relative permittivity of
4, the distance between the plates is increased to allow the insertion of a second insulator Smm
thick and relative permittivity E. If the capacitance so formed is one third of the original capacitance,
find E. (V.TU., Belgaum Karnataka University, February 2002)
Derive an expression for the capacitance of a parallel plate capacitor.

(V.TU., Belgaum Karnataka University, Summer 2002)
Three capacitors A, B and C are charged as follows
A = 10pF, 100 V B = I5pF, 150 V. C = 25uF, 200 V
They are connected in parallel with terminals of like polarities together. Find the voltage across
the combination. (V.TU., Belgaum Karnataka University, Summer 2002)
Prove that average power consumed by a pure capacitance is zero.

(V.TU., Belgaum Karnataka University, Summer 2002)
Current drawn by a pure capacitor of 20uF is 1.382A from 220V AC supply. What is the supply
frequency? (V.TU., Belgaum Karnataka University, Summer 2003)
Find the equivalent capacitance between the points A and B of the network shown in fig. 1.

(V.TU., Belgaum Karnataka University, Summer 2003)

4mf 9mf

| € €
Amf
Ae— —(—es

| ( | {
|\ | \

4mf 10mf
Fig. 5.52

Three capacitors of 1, 2 and 3 micro farads are connected in series across a supply voltage of 100V.
Find the equivalent capacitance of the combination and energy stored in each capacitor.
(Mumbai University 2003) (V.T.U. Belgaum Karnataka University, Wimter 2003)
Consider a parallel plate capacitor, the space between which is filled by two dielectric of thickness
d, and d, with relative permittivities € | and € , respectively. Derive an expression for the capacitance
between the plates. (V.T.U. Belgaum Karnataka University, Wimter 2004)
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A capacitor consists of two plates of area 0.16m> spaced 6mm apart. This space is filled with a
layer of Imm thick paper of relative permittivity 2, and remaining space with glass of relative
permittivity 5. A dc voltage of 10kV is applied between the plates. Determine the electric field
strength in each dielectric. (V.T.U. Belgaum Karnataka University, Wimter2004)
In a give R-L circuit, R = 35Qand L = 0.1H. Find (i) current through the circuit (i7) power factor
if a 50 Hz frequency, voltage V = 220£30° is applied across the circuit.
(RGPV Bhopal 2001)

Three voltage represented by e; = 20 sin ®¢, e, = 30 sin (o = 45°) and e; = sin (w¢ + 30°)
are connected in series and then connected to a load of impedance (2 +; 3) © Find the resultant
current and power factor of the circuit. Draw the phasor diagram.

(Mumbai University, 2002) (RGPV Bhopal 2001)

OBJECTIVE TESTS -5

A capacitor consists of two (a) zero and RI
(a) insulation separated by a dielectric (b) T and zero
(b) conductors separated by an insulator (c) zero and zero
(c) ceramic plates and one mica disc (d) I and RI (ESE 2001)
(d) silver-coated insulators 6. A parallel plate capacitor has an electrode
The capacitance of a capacitor is NOT area of 100 mm?, with a spacing of 0.1 mm
influenced by between the electrodes. The dielectric
(a) plate thickness between the plates is air with a permittivity
(b) plate area of 8.85 x 1072 F/m. The charge on the
(c) plate separation capacitor is 100 V. the stored energy in the
(d) nature of the dielectric capacitor is
A capacitor that stores a charge of 0.5 C at (a) 8.85 pJ (b) 440 pJ
10 volts has a capacitance of .....farad. (c) 22.1 nJ (d) 44.3 n]
(@) 5 (b) 20 (GATE 2003)
(c) 10 (d) 0.05 7. A composite parallel plate capacitor is made
If dielectric slab of thickness 5 mm and up of two different dielectric materials with
€,=61s inserted between the plates of an air different thicknesses (¢, and #,) as shown in
capacitor with plate separation of 8 mm, its Fig.5.54. The two different dielectric
capacitance is materials are separates by a conducting foil
(a) decreased (b) almost doubled F. The voltage of the conducting foil is
(¢) almost halved (d)unaffected
For the circuit shown in the given figure, |
the current through L and the voltage across €,=3;4,=0.5mm F L o0y
C, are respectively €, =4 1,=1mm
) | ov
Fig. 5.54
G C— B (@) 52 V (b) 60 V
(c) 67V (d) 33V
(GATE 2003)

Fig. 5.53

ANSWERS
Lb  2a 3.d 4b
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6.1. Absolute and Relative Permeabilities of a Medium

The phenomena of magnetism and electromagnetism are dependent upon a certain property of
the medium called its permeability. Every medium is supposed to possess two permeabilities :

(1) absolute permeability () and (ii) relative permeability (u,).

For measuring relative permeability, vacuum or free space is chosen as the reference medium. It
is allotted an absolute permeability of p, = 41 X 107 henry/metre. Obviously, relative permeability
of vacuum with reference to itself is unity. Hence, for free space,

absolute permeability B, = 4m X 107 H/m

relative permeability n, = L

Now, take any medium other than vacuum. Ifits relative permeability, as compared to vacuum is
1, then its absolute permeability is p = p, p, H/m.

6.2. Laws of Magnetic Force

Coulomb was the first to determine experimentally the quantitative expression for the magnetic
force between two isolated point poles. It may be noted here that, in view of the fact that magnetic
poles always exist in pairs, it is impossible, in practice, to get an isolated pole. The concept of an
isolated pole is purely theoretical. However, poles of a thin but long magnet may be assumed to be
point poles for all practical purposes (Fig. 6.1). By using a torsion balance, he found that the force
between two magnetic poles placed in a medium is

(i) directly proportional to their pole strengths
(if) inversely proportional to the square of the distance between them and

(iif) inversely proportional to the absolute permeability of the surrounding medium.

Fig. 6.1 Fig. 6.2

For example, if m, and m, represent the magnetic strength of the two poles (its unit as yet being
undefined), 7 the distance between them (Fig. 6.2) and [ the absolute permeability of the surrounding
medium, then the force F is given by

mym, - k mym,

or F=fk—= or F >—r  invector from
ur ur nr

F o mmy

where 7 is a unit vector to indicate direction of .
-

m, m, - - -
or F = =12 where F and r are vectors

p
In the S.I. system of units, the value of the constant k is = 1/4m.
mn,

F =2 N o F= =N —1in a medium
ampr dmp, 7
=
In vector form, F = m1m23 7 o= M N
4t r Ay, r
If, in the above equation,
1

my,=m (say) ; r = 1 metre ; F'=

3
Il

T,
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Then m*> =1 or m==1weber*

Hence, a unit magnetic pole may be defined as that pole which when placed in vacuum at a
distance of one metre from a similar and equal pole repels it with a force of 1/4w |, newtons.**

6.3. Magnetic Field Strength (H)

Magnetic field strength at any point within a magnetic field is numerically equally to the force
experienced by a N-pole of one weber placed at that point. Hence, unit of H is N/Wb.

Suppose, it is required to find the field intensity at a point A distant » metres from a pole of m
webers. Imagine a similar pole of one weber placed at point 4. The force experienced by this pole is

mx1 M N/Wb (or A/m)*** or oersted.

F = ——=N s H=
dnp,r Ay, r

3

Also, if a pole of m Wb is placed in a uniform field of
strength H N/Wb, then force experienced by the pole is =mH
newtons.

It should be noted that field strength is a vector quantity
having both magnitude and direction

N>
Il
~

H - _m _m__
47cu0r2 4 0r3

It would be helpful to remember that following terms are
sometimes interchangeably used with field intensity :
Magnetising force, strength of field, magnetic intensity and
intensity of magnetic field.

6.4. Magnetic Potential

The magnetic potential at any point within a mag-
netic field is measured by the work done in shifting a
N-pole of one weber from infinity to that point against
the force of the magnetic field. It is given by

M= —""_Jjwb
4y, r

...(Art. 4.13)
It is a scalar quantity.

Magnetic lines of force

6.5. Flux per Unit Pole

Aunit N-pole is supposed to radiate out a flux of one weber. Its symbol is @ Therefore, the flux
coming out of a N-pole of m weber is given by

® = m Wb

*  To commemorate the memory of German physicist Wilhelm Edward Weber (1804-1891).

A unit magnetic pole is also defined as that magnetic pole which when placed at a distance of one metre
from a very long straight conductor carrying a current of one ampere experiences a force of 1/21 newtons
(Art. 6.18).

*** Tt should be noted that N/Wb is the same thing as ampere/metre (A/m) or just A/m cause ‘turn’ has no units
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6.6. Flux Density (B)

It is given by the flux passing per unit area through a plane at right angles to the flux. Itis usually
designated by the capital letter B and is measured in weber/meter”. It is a Vector Quantity.
It ®Wb is the total magnetic flux passing normally through an area of 4 m?, then
B = ®AWb/m” or tesla (T)
Note. Let us find an expression for the flux density at a point distant » metres from a unit N-pole (i.e. a pole
of strength 1 Wb.) Imagine a sphere of radius » metres drawn round the unit pole. The flux of 1 Wb radiated out
by the unit pole falls normally on a surface of 41.m”. Hence

B=2__1 wom’
4 anr

6.7. Absolute Permeability (1) and Relative Permeability ()

In Fig. 6.3 is shown a bar of a magnetic material, say, iron placed in a uniform field of strength H
N/Wb. Suppose, a flux density of B Wb/m® is developed in the rod.

| >

>

3/ e — %

N+ >
T — - p— %B —
- —) S N\;__

H Lt .
(@) ®)
Fig. 6.3
Then, the absolute permeability of the material of the rod is defined as
W = B/H henry/metre or B = WH = p, erHWb/m2 ..()
When H is established in air (or vacuum), then corresponding flux density developed in air is
By = wH

Now, when iron rod is placed in the field, it gets magnetised by induction. If induced pole
strength in the rod is m Wb, then a flux of m Wb emanates from its N-pole, re-enters its S-pole and
continues from S to N-pole within the magnet. If 4 is the face or pole area of the magentised iron bar,
the induction flux density in the rod is

B, = m/A Wb/m’
Hence, total flux density in the iron rod consists of two parts [Fig. 6.3 (b)].
(i) B,—flux density in air even when rod is not present
(ii) B, —induction flux density in the rod
B = By+B,=pn,H+m/A
Eq. (i) above may be written as B=p,. p, H=p, B,
_ B _ B(material)
! B, a B, (vacuum)

Hence, relative permeability of a material is equal to the ratio of the flux density produced in

that material to the flux density produced in vacuum by the same magnetising force.

...for same H

6.8. Intensity of Magnetisation (l)

It may be defined as the induced pole strength developed per unit area of the bar. Also, it is the
magnetic moment developed per unit volume of the bar.
Let m = pole strength induced in the bar in Wb
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A = face or pole area of the bar in m’
Then I = m/A Wb/m®

Hence, it is seen that intensity of magnetisation of a substance may be defined as the flux density
produced in it due to its own induced magnetism.
If/ is the magnetic length of the bar, then the product (7 X /) is known as its magnetic moment M.
m_mX /

- M _ -
I = 1 Axl T magnetic moment/volume

6.9. Susceptibility (K)

Susceptibility is defined as the ratio of intensity of magnetisation | to the magnetising force H.
: K = I/Hhenry/metre.

6.10. Relation Between B, H, | and K

It is obvious from the above discussion in Art. 6.7 that flux density B in a material is given by

B = By+m/Ad=B,+1 L B=u H+1

Now absolute permeability is @ = £=M=u +L Sopu=EpytK
H H °"H 0

Also L= ok, o Pl =p,tK orp =1+K/p,

For ferro-magnetic and para-magnetic substances, K is positive and for diamagnetic substances,
it is negative. For ferro-magnetic substance (like iron, nickel, cobalt and alloys like nickel-iron and
cobalt-iron) L, is much greater than unity whereas for para-magnetic substances (like aluminium), p,
is slightly greater than unity. For diamagnetic materials (bismuth) p <1.

Example 6.1. The magnetic susceptibility of oxygen gas at 20°C is 167 X 10™! H/m. Calculate
its absolute and relative permeabilities.

—-11
Solution. b, = 1+ K 167x10

Ho 4nx107
Now, absolute permeability p= p, p, = 47 x 107 x 1.00133 = 12.59 x 107 H/m

=1.00133

6.11. Boundary Conditions

The case of boundary conditions between two materials of M
different permeabilities is similar to that discussed in Art. 4.19. @ = S
As before, the two boundary conditions are =2 1 B>
(i) the normal component of flux density is continuous across ~ Bin /
boundary. B, = B,, O N6
(if) the tangential component of H is continuous across ) —
boundary H,, = H,
As proved in Art. 4.19, in a similar way, it can be shown B, @
tan®, W
tan 6, W, 1
This is called the law of magnetic flux refraction. Fig. 6.4

that

6.12. Weber and Ewing’s Molecular Theory

&= \&‘) This theory was first advanced by Weber in 1852 and was, later on, further
H&é_ﬂé\\ developed by Ewing in 1890. The basic assumption of this theory is that

molecules of all substances are inherently magnets in themselves, each having
Fig. 6.5 aNand S pole. Inan unmagnetised state, it is supposed that these small molecular
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magnets lie in all sorts of haphazard manner forming
more or less closed loops (Fig. 6.5). According to the dy%%y
laws of attraction and repulsion, these closed magnetic *%
circuits are satisfied internally, hence there is no resultant
external magnetism exhibited by the iron bar. But when
such an iron bar is placed in a magnetic field or under the influence of
amagnetising force, then these molecular magnets start turning round
their axes and orientate themselves more or less along straight lines
parallel to the direction of the magnetising force. This linear
arrangement of the molecular magnets results in N polarity at one end
of the bar and § polarity at the other (Fig. 6.6). As the small magnets
turn more nearly in the direction of the magnetising force, it requires
more and more of this force to produce a given turning moment, thus
accounting for the magnetic saturation. On this theory, the hysteresis
loss is supposed to be due to molecular friction of these turning
magnets.
Because of the limited knowledge of molecular structure available
at the time of Weber, it was not

BAR MAGNETIZED

Molecular magnets which are
. . randomly arranged in the
2| possible to explain firstly, as to ynmagnetised state, get ori-
““Y“““‘ - B why the molecules themselves are  ented under the influence of an
magnets and secondly, why it is external magnetizing force
impossible to magnetise certain
substances like wood etc. The first objection was explained by
Battery Ampere who maintained that orbital movement of the electrons
: round the atom of a molecule constituted a flow of current which,
due to its associated magnetic effect, made the molecule a magnet.
Later on, it became difficult to explain the phenomenon of
diamagnetism (shown by materials like water, quartz, silver and
An iron nail converts into a magnet  copper etc.) erratic behaviour of ferromagnetic (intensely
£l sielon 5z e externgl EGMErA magnetisable) substances like iron, steel, cobalt, nickel and some
force starts acting on it X . .
of their alloys etc. and the paramagnetic (weakly magnetisable)
substances like oxygen and aluminium etc. Moreover, it was asked : if molecules of all substances are
magnets, then why does not wood or air etc. become magnetised ?

All this has been explained satisfactorily by the atom-domain theory which has superseded the
molecular theory. It is beyond the scope of this book to go into the details of this theory. The
interested reader is advised to refer to some standard book on magnetism. However, it may just be
mentioned that this theory takes into account not only the planetary motion of an electron but its
rotation about its own axis as well. This latter rotation is called ‘electron spin’. The gyroscopic
behaviour of an electron gives rise to a magnetic moment which may be either positive or negative. A
substance is ferromagnetic or diamagnetic accordingly as there is an excess of unbalanced positive
spins or negative spins. Substances like wood or air are non-magnetisable because in their case, the
positive and negative electron spins are equal, hence they cancel each other out.

6.13. Curie Point

As a magnetic material is heated, its molecules vibrate
more violently. As a consequence, individual molecular
magnets get out of alignment as the temperature is increased,
thereby reducing the magnetic strength of the magnetised
substance. Fig. 6.7 shows the approximate decrease of mag-
netic strength with rise in temperature. Obviously, it is pos-
sible to partially or even completely destroy the magnetic
properties of a material by heating. The temperature at which °C
the vibrations of the molecular magnets become so random Fig. 6.7

Curie
Point

Magnetic Strength
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and out of alignment as to reduce the magnetic strength to zero is called Curie point. More accu-
rately, it is that critical temperature above which ferromagnetic material becomes paramagnetic.

ELECTROMAGNETISM

6.14 . Force on a Current-carrying Conductor Lying in a Magnetic Field

It is found that whenever a current-carrying conductor is placed in magnetic field, it experiences
a force which acts in a direction perpendicular both to the direction of the current and the field. In
Fig. 6. 8 is shown a conductor XY lying at right angles to the uniform horizontal field of flux density B
Wb/m® produced by two solenoids 4 and B. If / is the length of the conductor lying within this field
and / ampere the current carried by it, then the magnitude of the force experienced by it is

R F = Bll o U, H1l newton

Using vector notation ' = | l X B and F'=1IB sin 6 where 0 is the angle between l and B which
is 90° in the present case

or F = Il Bsin 90° = I/ B newtons (" sin90°=1)

The direction of this force may be easily found by Fleming’s left-hand rule.

Motion
A
b=
>' )
N [+ S %
~1 >
— —_—
—] Lines of Flux
Direction of \
Current
Fig. 6.8 Fig. 6.9

Hold out your left hand with forefinger, second finger and thumb at right angles to one another.
If the forefinger represents the direction of the field and
the second finger that of the current, then thumb gives the
direction of the motion. It is illustrated in Fig. 6.9.

Fig. 6.10 shows another method of finding the direc-
tion of force acting on a current carrying conductor. It is
known as Flat Left Hand rule. The force acts in the direc-
tion of the thumb obviously, the direction of motor of the
conductor is the same as that of the force.

It should be noted that no force is exerted on a con-
ductor when it lies parallel to the magnetic field. In gen-
eral, if the conductor lies at an angle 8 with the direction
of the field, then B can be resolved into two components,
B cos 0 parallel to and B sin 0 perpendicular to the con-
ductor. The former produces no effect whereas the latter is
responsible for the motion observed. In that case,

F = BIl sin 6 newton, which has been expressed as
cross product of vector above.*

It is simpler to find direction of Force (Motion) through cross product of given vectors / / and B .
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6.15. Ampere’s Work Law or Ampere’s Circuital Law

The law states that m.m.f.* (magnetomotive force corre-
sponding to e.m.f. i.e. electromotive force of electric field) around
a closed path is equal to the current enclosed by the path.

- -
Mathematically, IH ds =1 amperes where H is the vector
representing magnetic field strength in dot product with vector

d’s of the enclosing path S around current / ampere and that is

why line integral (§) of dot product I;I) .ds is taken.

@
®® ©

Fig. 6.11

Work law is very comprehensive and is applicable to all magnetic fields whatever the shape of
enclosing path e.g. (a) and (b) in Fig. 6.11. Since path ¢ does not enclose the conductor, the m.m.f.

around it is zero.

The above work Law is used for obtaining the value of the magnetomotive force around simple
idealized circuits like (i) a long straight current-carrying conductor and (ii) a long solenoid.

(i) Magnetomotive Force around a Long Straight Conductor

In Fig. 6.12 is shown a straight conductor
which is assumed to extend to infinity in either
direction. Let it carry a current of / amperes
upwards. The magnetic field consists of circular

lines of force having their plane perpendicular to
the conductor and their centres at the centre of the
conductor.

Suppose that the field strength at point C
distant » metres from the centre of the conductor is
H. Then, it means that if a unit N-pole is placed at
C, it will experience a force of H newtons. The
direction of this force would be tangential to the
circular line of force passing through C. If this
unit N-pole is moved once round the conductor

N+Pole

2
7

Motion of N-Pole

against this force, then work done i.e.
m.m.f. = force x distance =/
ie. I = HX2mrjoules=Amperes
1

H =1
or 2nr

= -
= IH .d 5" Joules = Amperes =/

k

Fig. 6.12

Obviously, if there are NV conductors (as shown in Fig. 6.13), then

H = N A/mor Oersted

N 2nr
OD _ NI 2 .
DD and B =y, me/m tesla ...in air
L— r NI
= Mol W Wh/m? tesla ...In a medium
2nr
Fig. 6.13

**  M.M.F. is not a force, but is the work done.
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(if) Magnetic Field Strength of a Long Solenoid
Let the Magnetic Field Strength along the axis of the sole-
noid be H. Let us assume that

(i) the value of H remains constant throughout the length /
of the solenoid and

(if) the volume of H outside the solenoid is negligible.

Suppose, a unit N-pole is placed at point 4 outside the sole-
noid and is taken once round the completed path (shown dotted
in Fig. 6.14) in a direction opposite to that of . Remembering

Magnetic field around a coll
carrying electric current

that the force of H newtons acts on the N-pole only 1
over the length / (it being negligible elsewhere), the L —
work done in one round is DOOOOO®O® ;1 )
= H X [joules = Amperes A r— -

\\H___/

The ‘ampere-turns’ linked with this path are N/ —
where N is the number of turns of the solenoid and /
the current in amperes passing through it. Accord- @ ® O ® @ /
ing to Work Law

HxI=NI or H= %A/m or Oersted ~%< —

Also B =M°TNIWb/m2 or tesla ..inair N-POLE

NI Fig. 6.14
= Holt, Wb/m® or tesla ..inamedium N

/

6.16. Biot-Savart Law*

The expression for the magnetic field strength dH produced at point P by a vanishingly small
length d/ of a conductor carrying a current of / amperes (Fig. 6.15) is given by

a = 14500
4tr
- - 5
or dH = (Ild! xr)/4nr” in vector form

5
The direction of dH is perpendicular to the plane

5
containing both ‘ d/ ’ and 7 ie. entering.
Mo Ldl

or dB, = sin @ Wb/m®
o
4rr
- >
= Wol dlxr
. and dB, = ————5— invector form
Fig. 6.15 Anr

6.17. Applications of Biot-Savart Law

(i) Magnetic Field Strength Due to a Finite Length of Wire Carrying Current

Consider a straight wire of length / carrying a steady current /. We wish to find magnetic field
strength (H) at a point P which is at a distance » from the wire as shown in Fig. 6.16.

*  After the French mathematician and physicist Jean Baptiste Biot (1774-1862) and Felix Savart
(1791-1841) a well-known French physicist.
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-

The magnetic field strength dH due to a small element d/ of the wire shown is
- o
- A
dH = Ll?s (By Biot-Savart Law)
4rs
- Idl sin © + N
or dH = an u (where u is unit vector perpendicular to
4t X s R
plane containing d/ and § and into the plane.)
= Idlcosd
or dH = 4—2 u ...[* 0 and ¢ are complementary angles]
TS
The magnetic field strength due to entire length / :
[
T I?I> _ I J‘cos dl ;
I r 4n §2
T P =
s 1
B _ I f&idzﬁ ( um¢=ldnﬁg646)
4| J 2 s
| Lo
[ ]
A\ g [
3 2 12332
0 § is unit vector an 0% am o T+ 1)
Y in direction of s
(- risconstant) ; s = \/rz +1% in Fig. 6.16
Fig. 6.16 Ir

1
_ { J‘ dl ]ﬁ (Taking 7° out from denominator)

A’ |41+ (/1) B12

To evaluate the integral most simply, make the following substitution

% = tan ¢ in Fig. 6.16

I=rtan¢ ..dl=r sec’ 0ddand 1 + (r/] )2 =1+ tan’ 0= sec’ ¢ and limits get transformed
i.e. become 0 to ¢.

- 2 2
— S€C A A . A
H*%rzdu Ir3 cos d i —sin 4
4 sec 4 r 4 r 0
0 0
I . A
= —SsmQou
4nr ¢
N.B. For wire of infinite length extending it at both ends i.e. —oto + oothe limits of integration would be
LDV U USSR SN
——to+—,giving H=—X2u or H=—u .
2 2 4nr 2nr

(if) Magnetic Field Strength along the Axis of a
Square Coil

This is similar to (i) above except that there are four
conductors each of length say, 2a metres and carrying a
current of / amperes as shown in Fig. 6.17. The Mag-
netic Field Strengths at the axial point P due to the op-
posite sides ab and cd are H , and H_, directed at right
angles to the planes containing P and ab and P and cd
respectively. Now, A, and H _, are numerically equal,

Fig. 6.17
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hence their components at right angles to the axis of the coil will cancel out, but the axial components
will add together. Similarly, the other two sides da and bc will also give a resultant axial component
only.

As seen from Eq. (i) above,
_ 1.2cos6 _1IcosB

H, = 41 [cos 6 — cos (180° —0)]

Tr 4nr 2nr
I.cosB
Now r = a2 +x2 Hab = —
21 \/az +x°
. . . I cos 6O .
Its axial componentsis H, = H,k .sin 0= —————.sin 0

21 \Iaz +x2

All the four sides of the rectangular coil will contribute an equal amount to the resultant magnetic

field at P. Hence, resultant magnetising force at P is
I cos©

H = 4x———— .sina,
2n\/a2+x2
Now cos = —2%  and sina= %
\I(2a2+x2) a +x
2
H = 2a” .1 AT/m.

T (a2 + x2) . \/x2 +24°
In case, value of H is required at the centre O of the coil, then putting x = 0 in the above expres-
sion,

2
22a T 2T
Ta N2 .a Ta

Note. The last result can be found directly as under. As seen from Fig. 6.18, the field at point O due to any
side is, as given by Eq. (i)

we get H =

-n/4
_ I : 1 —45° 1 o ! 2 N\ /
=L 0.d0=-"L|-coso| ¥ =L 2cosaso=—L_ . Z T
4na .[ - 4na| €0%8lase =g 7 dna 2 N
/4 Da N
Resultant magnetising force due to all sides is D 1
H = 4><L.i=@ AT/m ...as found above L 4 N
dta 2 ma i
(iii) Magnetising Force on the Axis of a Circular Coil Fig. 6.18

In Fig. 6.19 is shown a circular one-turn coil carrying a current of /
amperes. The magnetising force at the axial point P due to a small element ‘dl’ as given by Laplace’s

Law is _,| |__ dl
ol O ¢ =
dH| = O
4 (r" +x°)
The direction of dH is at right angles to the line AP join-
ing point P to the element ‘d/’. Now, dH can be resolved into

0= P
X dH’ : 0
two components : dHl /  ydH”
(@) the axial component dH" = dH sin 0 B

(b) the vertical component dH” = dH cos 0 Fig. 6.19
Now, the vertical component dH cos 0 will be cancelled by an equal and opposite vertical com-
ponent of dH due to element ‘d/’ at point B. The same applies to all other diametrically opposite pairs

of dI’s taken around the coil. Hence, the resultant magnetising force at P will be equal to the sum of
all the axial components.
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B , . B I.dl.r sin@=—L
H = ZdH —ZdH Slnejdl—zWIdl [ '7"2+sz

_ I.r J'Z"’ _ 1.r2nr 2

an (2 + ) o a4 27+

_ 1 r . 1 sin’ 0

= 50 (rz +x2)3/2 sH= o AT/m
or H = %sifeAT/m —for an N-turn coil (D)

r

In case the value of H is required at the centre O of the coil, then putting 8 = 90° and sin 6 = 1 in
the above expression, we get
=N

r

H = ZL — for single-turn coil ~ or —for N-turn coil
r

Note. The magnetising force H at the centre of a circular coil can be directly found as follows :

With reference to the coil shown in the Fig. 6.20, the magnetising force dH produced at O due to
4 the small element d/ (as given by Laplace’s law) is

Q 3 [.disin® _ I.dl
I <k dH = 2 (v sin®=sin90°=1)

) W anrt 4ns
l © San - sld _ 1 s, o gl 1

dnr’ Amr? 4 i’ 2r

H = ZL AT/m —for 1-turn coil ; % AT/m —for N-turn coil.
r r

Fig. 6.20

(iv) Magnetising Force on the Axis of a Short Solenoid

Let a short solenoid having a length of /
and radius of turns 7 be uniformly wound with
N turns each carrying a current of / as shown
in Fig. 6.21. The winding density i.e. num-
ber of turns per unit length of the solenoid is
NJ/I. Hence, in a small element of length dx,
there will be N.dx/I turns. Obviously, a very
short element of length of the solenoid can
be rega?ded as a conceqtrated coil of very CRCRORCRCRCRORCRCRCRCRCRCRCRCRCRO)
short axial length and having N.dx// turns. Let
dH be the magnetising force contributed by Fig. 6.21
the element dx at any axial point P. Then, substituting dH for H and N.dx/I for N in Eq. (iii), we get

_ N.dx | .3
dH Y .sin” 0
Now dx.sin® = r.do/sin®* . dx=r.d®/sin’ O
Substituting this value of dx in the above equation, we get
NI

dH = 57 sin© . do

Total value of the magnetising force at P due to the whole length of the solenoid may be found by
integrating the above expression between proper limits.

*  Because /sin® =r :/[=r/sin 0. Now, M/N=1.d0 = r d6/sin 0. Also, MN = dx, sin 0, hence dx =r d0/sin’ 0.
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_ NI (% . _NI 0
H = 7.[91 sme.de—ﬁ|—cose|el2

NI
21
The above expression may be used to find the value of H at any point of the axis, either inside or
outside the solenoid.
(i) Atmid-point, 8, = (T —0,), hence cos 8, = —os 6,
281 NI

(cos 8, —cos 0,) ..(iv)

H = 21 cos 0, = Tcos@1
Obviously, when the solenoid is very long, cos 8, becomes nearly unity. In that case,
H = #AT/m “Art. 6.15 (ii)

(ii) Atany point on the axis inside a very /ong solenoid but not too close to either end, 6, = 0 and
0, = mso that cos 0, = 1 and cos 0, =—1. Then, putting these values in Eq. (iv) above, we have
H= NMyp=N
21 !
It proves that inside a very long solenoid, H is practically constant at all axial points excepts
those lying too close to either end of the solenoid.
(iii) Towards either end of the solenoid, /7 decreases and exactly at the ends, 8, =n/2 and 0, = 7,

so that cos 8, = 0 and cos 6, =-1. Hence, from Eq. (iv) above, we get

NI
B = A4
21

In other words, value of H is decreased to half the normal value well inside the solenoid.

Example 6.2. Calculate the magnetising force and flux density at a distance of 5 cm from a
long straight circular conductor carrying a current of 250 A and placed in air. Draw a curve show-
ing the variation of B from the conductor surface outwards if its diameter is 2 mm.

Solution. As seen from Art. 6.15 (i),

I 250
H= —=—=—_=7956 AT/m
2nr  2mx0.05 .l
B = p,H=4m x 107 x 795.6 = 10° Wb/m’ |
a |
In general, B = Mol £ I
2nr 2 [
Now, at the conductor surface, #= 1 mm = 10°> m M I —
-7 |
:4T|:X10 X 250 =005 Wb/mZ O ]0_3 — 1 metres
3 .
2 x 10 Fig. 6.22

The variation of B outside the conductor is shown in Fig. 6.22.

Example 6.3. A4 wire 2.5 m long is bent (i) into a square and (ii) into a circle. If the current
flowing through the wire is 100 A, find the magnetising force at the centre of the square and the
centre of the circle. (Elec. Measurements; Nagpur Univ. 1992)

Solution. (i) Each side of the square is 2a = 2.5/4 = 0.625 m
Value of H at the centre of the square is [Art 6.17 (ii)]

= V2L NRXI00 (il =255 5= 0398 m
ma | mx03125

1/2r=100/2 x 0.398 =125.6 AT/m

Value of H at the centre is
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Example 6.4. A current of 15 A is passing along a straight wire. Calculate the force on a unit
magnetic pole placed 0.15 metre from the wire. If the wire is bent to form into a loop, calculate the
diameter of the loop so as to produce the same force at the centre of the coil upon a unit magnetic
pole when carrying a current of 15 A. (Elect. Engg. Calcutta Univ.)

Solution. By the force on a unit magnetic pole is meant the magnetising force H.
For a straight conductor [Art 6.15 ()] H=1/2 tr=15/2n x 0.15 = 50/t AT/m
Now, the magnetising force at the centre of a loop of wire is [Art. 6.17 (iii)]
= I/ 2r=1/D=15/D AT/m
Since the two magnetising forces are equal
: 50/m = 15/D; D=157w/50=0.9426 m = 94.26 cm.

Example. 6.5. A4 single-turn circular coil of 50 m. diameter carries a direct current of 28 x 1 0’
A. Assuming Laplace s expression for the magnetising force due to a current element, determine the
magnetising force at a point on the axis of the coil and 100 m. from the coil. The relative permeabil-
ity of the space surrounding the coil is unity.

Solution. As seen from Art 6.17 (iif), H= ZL .sin’ @ AT/m
r
r 25

Here sin@ = = =0.2425
P x’ (252 +100°
s 3 28 10
sin’@ = (0.2425)° = 001426 - H= 5 001426 768 AT/m

6.18. Force Between Two Parallel Conductors

(i) Currents in the same direction. In Fig. 3 Q
6.23 are shown two parallel conductors P and O b IZ+
carrying currents /; and 7, amperes in the same
direction i.e. upwards. The field strength in the
space between the two conductors is decreased due

to the two fields there being in opposition to each —
other. Hence, the resultant field is as shown in the

figure. Obviously, the two conductors are e 4 ]
attracted towards each other. @

(if) Currents in opposite directions. If, as
shown in Fig. 6.24, the parallel conductors carry
currents in opposite directions, then field strength
is increased in the space between the two conduc-
tors due to the two fields being in the same direc-
tion there. Because of the lateral repulsion of the Fig. 6.23
lines of the force, the two conductors experience a mutual force of repulsion as shown separately in
Fig. 6.24 (b).

6.19. Magnitude of Mutual Force

It is obvious that each of the two parallel conductors lies in the magnetic field of the other
conductor. For example, conductor P lies in the magnetic field of O and Q lies in the field of P. If ‘d”
metres is the distance between them, then flux density at Q due to P is [Art. 6.15 (i)]

_ “011 2
B = 27tde/m
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If / is the length of conductor Q lying in this
flux density, then force (either of attraction or
repulsion) as given in Art. 6.14 is
Mol 1yl 1
2nd N +Il 12|
Obviously, conductor P will experience an
equal force in the opposite direction.

F=BI,[newton or F=

The above facts are known as Laws of Paral-
lel Currents and may be stated as follows :

(i) Two parallel conductors attract each other
if currents through them flow in the same d
direction and repel each other if the cur-
rents through them flow in the opposite
directions. @

(if) The force between two such parallel con-
ductors is proportional to the product of
current strengths and to the length of the conductors considered and varies inversely as the
distance between them.

Fig. 6.24

6.20. Definition of Ampere
If has been proved in Art. 6.19 above that the force between two infinitely long parallel cur-
rently-carrying conductors is given by the expression
-7
uolll _4nx10° I 1, 1 ) 11,
ma O F ond 0 ~d

The force per metre run of the conductors is

F = —=N

F = 2x10_7%N/m

If I, = I, = 1 ampere (say) and d = 1 metre, then /'=2 X 10" N

Hence, we can define one ampere current as that current which when flowing in each of the two
infinitely long parallel conductors situated in vacuum and separated 1 metre between centres,
produces on each conductor a force of 2 x 107 N per metre length.

Example 6.6. Two infinite parallel conductors carry parallel currents of 10 amp. each. Find
the magnitude and direction of the force between the conductors per metre length if the distance
between them is 20 cm. (Elect. Engg. Material - 11 Punjab Univ. May 1990)

Solution. F o= 2x 107 10x10x1N=10% N
0.2

The direction of force will depend on whether the two currents are flowing in the same direction
or in the opposite direction. As per Art. 6.19, it would be a force of attraction in the first case and that
or repulsion in the second case.

Example 6.7. Two long straight parallel wires, standing in air 2 m apart, carry currents I, and
1, in the same direction. The magnetic intensity at 4a point midway between the wires is 7.95 AT, /m If
the force on each wire per unit length is 2.4 X 1 0° N, evaluate 1, and I,

Solution. As seen from Art. 6.17, the magnetic intensity of a long straight current-carrying
conductor is

H = —L AT/m
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Also, it is seen from Fig. 6.23 that when the two currents flow in the same direction, net field
strength midway between the two conductors is the difference of the two field strengths.

Now, H, =1,/2n and H, = 1,/21 because r = 2/1 = 2 metre

I, 1 :
L2 =795 - I -1,=50 .
2n 2n b2 ®
Force per unit length of the conductors is F'=2 X 1071 \L,/d newton

24x 10% = 2x 107 IL/2 . 1L, = 2400 ...(iil)

Substituting the value of 7, from (i) in (ii), we get
(50 + 1,)I, = 2400 or 122 + 507, —2400 = 0
or (I, +80)(,-30) =0 .. L,=30A and [,=50+30=80A

Tutorial Problems No. 6.1

1. The force between two long parallel conductors is 15 kg/metre. The conductor spacing is 10 cm. If
one conductor carries twice the current of the other, calculate the current in each conductor.
[6,060 A; 12,120 A]
2. A wire is bent into a plane to form a square of 30 cm side and a current of 100 A is passed through it.
Calculate the field strength set up at the centre of the square. [300 AT/m]
(Electrotechnics - 1, M.S. Univ. Baroda )

MAGNETIC CIRCUIT

6.21. Magnetic Circuit

It may be defined as the route or path which is followed by magnetic flux. The law of magnetic
circuit are quite similar to (but not the same as) those of the electric circuit.

Consider a solenoid or a toroidal iron ring having a magnetic path of / metre, area of cross
section 4 m” and a coil of N turns carrying / amperes wound anywhere on it as in Fig. 6.25.

Then, as seen from Art. 6.15, field strength inside the solenoid is

H = %AT/m
Now B = pop, H= %’NIWb/m2
Total flux produce ®=Bx 4 = M Wb
" T

The numerator ‘N/” which produces magnetization in the magnetic
circuit is known as magnetomotive force (m.m.f.). Obviously, its unit is ampere-turn (AT)*. It is

analogous to e.m.f. in an electric circuit.

The denominator £ is called the reluctance of the circuit and is analogous to resistance in
MO Mr A

electric circuits.
flux = —omf o £
reluctance S
Sometimes, the above equation is called the “Ohm’s Law of Magnetic Circuit” because it resembles
a similar expression in electric circuits i.e.

*  Strictly speaking, it should be only ‘ampere’ because turns have no unit.
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current = & or I=X
resistance R

6.22. Definitions Concerning Magnetic Circuit

1. Magnetomotive force (m.m.f.). It drives or tends to drive flux through a magnetic circuit
and corresponds to electromotive force (e.m.f.) in an electric circuit.

M.M.F. is equal to the work done in joules in carrying a unit magnetic pole once through the
entire magnetic circuit. It is measured in ampere-turns.

In fact, as p.d. between any two points is measured by the work done in carrying a unit charge
from one points to another, similarly, m.m.f. between two points is measured by the work done in
joules in carrying a unit magnetic pole from one point to another.

2. Ampere-turns (AT). It is the unit of magnetometre force (m.m.f.) and is given by the
product of number of turns of a magnetic circuit and the current in amperes in those turns.

3. Reluctance. Itisthe name given to that property of a material which opposes the creation of
magnetic flux in it. It, in fact, measures the opposition offered to the passage of magnetic flux
through a material and is analogous to resistance in an electric circuit even in form. Its units is
AT/Wb.*

reluctance = A ; resistance = P — 4
ud pou, A A o4
In other words, the reluctance of a magnetic circuit is the number of amp-turns required per

weber of magnetic flux in the circuit. Since 1 AT/Wb = 1/henry, the unit of reluctance is “reciprocal
henry.”

4. Permeance. It is reciprocal of reluctance and implies the case or readiness with which
magnetic flux is developed. It is analogous to conductance in electric circuits. It is measured in terms
of Wb/AT or henry.

5. Reluctivity. Tt is specific reluctance and corresponds to resistivity which is ‘specific
resistance’.

6.23. Composite Series Magnetic Circuit

In Fig. 6.26 is shown a composite series magnetic circuit consisting of three different magnetic
materials of different permeabilities and lengths and one air gap (u, = 1). Each path will have its own
reluctance. The total reluctance is the sum of individual reluctances as they are joined in series.

/
Hou, 4 IRean A

total reluctance = X
= h 4L ) + % +—4
Mol 4 Mok, 4 Kok, 4 Ko,

flux ® = m.Iln.f.

u‘OurA

6.24. How to Find Ampere-turns ?

It has been shown in Art. 6.15 that H= NI/ AT/m or N[=H x [
ampere-turns AT = HX [
Hence following procedure should be adopted for calculating Fig. 6.26
the total ampere turns of a composite magnetic path.

*  From the ratio ®= Tﬁ it is obvious that reluctance = m.m.f./®. Since m.m.f. is in ampere-
reluctance
turns and flux in webers, unit of reluctance is ampere-turn/weber (AT/Wb) or A/Wb.
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() Find H for each portion of the composite circuit. For air, /7 = B/, otherwise H = B/U,\L...
(if) Find ampere-turns for each path separately by using the relation AT = H x /.
(iii) Add up these ampere-turns to get the total ampere-turns for the entire circuit.
6.25. Comparison Between Magnetic and Electric Circuits.
SIMILARITIES

Electric Circuit

Magnetic Circuit

EMF

7

’
e
“
Fig. 6.28
1. Flux = _mmf Current = —e’.m.f.
reluctance resistance
2. M.M.F. (ampere-turns) E.M.F. (volts)
3. Flux ® (webers) Current / (amperes)
4. Flux density B (Wb/m?) Current density (A/m®)
/ / . [ _ 1
5. Reluctance S WA\ Hop A resistance R = p Yy,
6. Permeance (= 1/reluctance) Conductance (= 1/resistance)
7. Reluctivity Resistivity
8. Permeability (= 1/reluctivity) Conductivity (= 1/resistivity)
9. Total mm.f. = DS, + DS, + DS, + ... 9. Total em.f. = IR + IR, + IR, + .....

DIFFERENCES

1. Strictly speaking, flux does not actually ‘flow’ in the sense in which an electric current flows.

2. If temperature is kept constant, then resistance of an electric circuit is constant and is
independent of the current strength (or current density). On the other hand, the reluctance of a magnetic
circuit does depend on flux (and hence flux density) established in it. It is so because 1 (which equals
the slope of B/H curve) is not constant even for a given material as it depends on the flux density B.
Value of 1 is large for low value of B and vice-versa. Hence, reluctance is small (S = //u4) for small
values of B and large for large values of B.

3. Flow of current in an electric circuit involves continuous expenditure of energy but in a
magnetic circuit, energy is needed only creating the flux initially but not for maintaining it.

6.26. Parallel Magnetic Circuits

Fig. 6.29 (a) shown a parallel magnetic circuit consisting of two parallel magnetic paths ACB
and ADB acted upon by the same m.m.f. Each magnetic path has an average length of 2 (/, + 1,).
The flux produced by the coil wound on the central core is divided equally at point 4 between the two
outer parallel paths. The reluctance offered by the two parallel paths is = half the reluctance of each
path.

Fig. 6.29 (b) shows the equivalent electrical circuit where resistance offered to the voltage source
isS=R|R=R/2
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Fig. 6.29

It should be noted that reluctance offered by the central core AB has been neglected in the above
treatment.

6.27. Series-Parallel Magnetic Circuits

Such a circuit is shown in Fig.

6.30 (a). It shows two parallel mag- (—— 8 ——b-— &2 ——~
netic circuits ACB and ACD con- & |
nected across the common magnetic
path AB which contains an air-gap
of length /.. As usual, the flux ®in
the common core is divided equally
at point 4 between the two parallel
paths which have equal reluctance.
The reluctance of the path AB con-
sists of (i) air gap reluctance and (ii) Fig. 6.30

the reluctance of the central core which comparatively negligible. Hence, the reluctance of the cen-
tral core AB equals only the air-gap reluctance across which are connected two equal parallel reluc-
tances. Hence, the m.m.f. required for this circuit would be the sum of (i) that required for the air-gap
and (ii) that required for either of two paths (not both) as illustrated in Ex. 6.19, 6.20 and 6.21.

The equivalent electrical circuit is shown in Fig. 6.30 (b) where the total resistance offered to the
voltage source is = R, + R|[R =R, + R/2.

Tt
o)

T 0
T
Airgap
O
R —

6.28. Leakage Flux and Hopkinson’s Leakage Coefficient

Leakage flux is the flux which follows a path not intended for it. In
Fig. 6.31 is shown an iron ring wound with a coil and having an air-
gap. The flux in the air-gap is known as the useful flux because it is
only this flux which can be utilized for various useful purposes.

It is found that it is impossible to confine all the flux to the iron
path only, although it is usually possible to confine most of the electric
current to a definite path, say a wire, by surrounding it with insulation.

Leakage Flux - > ; .
Useful Flux /7 Unfortunately, there is no known insulator for magnetic flux. Air,

which is a splendid insulator of electricity, is unluckily a fairly good
magnetic conductor. Hence, as shown, some of the flux leaks through
air surrounding the iron ring. The presence of leakage flux can be
detected by a compass. Even in the best designed dynamos, it is found




276 Electrical Technology

that 15 to 20% of the total flux produced leaks away without being utilised usefully.
If, ®, = total flux produced ; ® = useful flux available in the air-gap, then
. _ total flux D,
leakage coefficient A = Tsoful . " A= 3
In electric machines like motors and generators, magnetic leakage is undesirable, because, al-
though it does not lower their power efficiency, yet it leads to their increased weight and cost of
manufacture. Magnetic leakage can be minimised by placing the exciting coils or windings as close
as possible to the air-gap or to the points in the magnetic circuit where flux is to be utilized for useful

purposes.

It is also seen from Fig. 6.31 that there is fringing or spreading of lines of flux at the edges of the
air-gap. This fringing increases the effective area of the air-gap.

The value of A for modern electric machines varies between 1.1 and 1.25.

6.29. Magnetisation Curves

The approximate magnetisation curves of a few magnetic materials are shown in Fig. 6.32.

These curves can be determined by the following methods provided the materials are in the
form of a ring :
(a) By means of a ballistic galvanometer and (b) By means of a fluxmeter.

6.30. Magnetisation Curves by Ballistic Galvanometer

In Fig. 6.33 shown the specimen 2.0
ring of uniform cross-section wound — e
uniformly with a coil P which is con- 1.8 5o — T
I i = —
nected to a battery B through a revers- ST 1A
ing switch RS, a variable resistance R, 1.6 T = Siallol
and an ammeter. Another secondary Z Forgine’
coil S also wound over a small portion & 1.4 Y /< rgn
of the ring and is connected through a & g ) ‘oo*g\
resistance R to a ballistic galvanometer & 1.2 /A
BG. M I —T |
The current through the primary P E 1 L

can be adjusted with the help of R,. Sup- % 0.8 o T
pose the primary current is . When the & ' | S A
primary current is reversed by means of < ¢ |
RS, then flux is reversed through S, 3 | /
hence an induced e.m.f. is produced in . 0.4 || /
it which sends a current through BG. |
This current is of very short duration. 0.2 /
The first deflection or ‘throw’ of the BG V
is proportional to the quantity of elec-

C 2000 4000 6000 8000 1000 12000 1400

tricity or charge passing through it so
long as the time taken for this charge to HIN AT/m
flow is short as compared with the time Fig. 6.32
of one oscillation.
If 6 = first deflection or ‘throw’ of the galvanometer when primary current / is reversed.
k = ballistic constant of the galvanometer i.e. charge per unit deflection.

then, charge passing through BG is = k6 coulombs ..()
Let ®= flux in Wb produced by primary current of / amperes ; ¢ = time of reversal of flux ; then

rate of change of flux = % Whb/s
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Fig. 6.33

If N, is the number of turns in secondary coil S, then average e.m.f. induces in it is
=N, .29 yolt.
t

2N, ®

Secondary current or current through BG = amperes
where R_ is the total resistance of the secondary circuit.
2N, D 2N, ® .
Rszt Xt = RZS coulomb ...(ii)
2N, ® kOR
2 OES £ Wb
s 2]\/VZ

If A m is the cross-sectional area of the ring, then flux density is
~ 2 _FOR w2
4 2N,4
If NV, is the number of primary turns and / metres the mean circumference of the ring, then,
magnetising force /= NI/l AT/m.
The above experiment is repeated with different values of primary current and form the data so

obtained, the B/H curves or magnetisation curves can be drawn.

Charge flowing through BG = average current X time =

Equation (i) and (ii), we get k0 =

6.31. Magnetisation Curves by Fluxmeter

In this method, the BG of Fig. 6.31 is replaced by a fluxmeter which is just a special type of
ballistic galvanometer. When current through P is reversed, the flux is also reversed. The deflection
of the fluxmeter is proportional to the change in flux-linkages of the secondary coil. If the flux is
reversed from + ®to —®, the change in flux-linkages in secondary Sin =2 ®N,,.

If 0 = corresponding deflection of the fluxmeter
C = fluxmeter constant i.e. weber-turns per unit deflection.
then, change of flux-linkages in S=C 0
Cco o _ €6 2
20N, = (C6 O==—Wb; B= —= Wb/
2 D A T T I

Example 6.8. A fluxmeter is connected to a search-coil having 600 turns and mean area of
4 cm’. The search coil is placed at the centre of an air-cored solenoid 1 metre long and wound with
1000 turns. When a current of 4 A is reversed, there is a deflection of 20 scale divisions on the
fluxmeter. Calculate the calibration in Wb-turns per scale division.

(Measurements-I, Nagpur Univ. 1991)
Solution. Magnetising force of the solenoid is H = NI/l AT/m
B=uy H=y, NI/l=41x 10" x 1000 x 4/1 = 161 x 10™ Wb/m’
Flux linked with the search coil is ®= BA = 641 x 10® Wb
Total change of flux-linkages on reversal
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2% 64mx 10° x 600 Wh-turns “Art. 6.29
= 7.68% x 10 Wb-turns

Change in flux-linkages
deflection produced
= 7.68m x 1020 =1.206 x 10" Wh-turns/division
Example 6.9. A ballistic galvanometer, connected to a search coil for measuring flux density in
a core, gives a throw of 100 scale divisions on reversal of flux. The galvanometer coil has a resis-
tance of 180 ohm. The galvanometer constant is 100 UC per scale division. The search coil has an
area of 50 em’, wound with 1000 turns having a resistance of 20 ohm. Calculate the flux density in
the core. (Elect. Instru & Measu. Nagpur Univ. 1992)
Solution. As seen from Art. 6.28.
® = 2N, YR, or @®=kOR /2N, Wb
- BA = KOR /2N, or B=kBR /2N,4
Here k = 100 uC/division = 100 x 10° = 10™ C/division
6 = 100;4 =50 cm*=5x 10° m’
R, = 180+20=200Q
B = 10*x 100 x 200/2 x 1000 x 5x 107 =0.2 Wb/m’
Example 6.10. 4 ring sample of iron, fitted with a primary and a secondary winding is to be

tested by the method of reversals to obtain its B/H curve. Give a diagram of connections explain
briefly how the test could be carried out.

Fluxmeter constant C is given by =

In such a test, the primary winding of 400 turns carries a current of 1.8 A. On reversal, a
change of 8 X 1 07 Wb-turns is recorded in the secondary winding of 10 turns. The ring is made up
of 50 laminations, each 0.5 mm thick with outer and inner diameters of 25 and 23 cm respectively.
Assuming uniform flux distribution, determine the values of B, H and the permeability.

Solution. Here, change of flux- hnkages—ZCI)N =8 x 10 Wb-turns
20x 10 = 8x 10° or ®=4x 10" Wb and 4=2.5% 10* m’

4%10 400 1.
g = X107 Lo woim®; = M oA00XL8 5o At
2.5%10 I~ 024m
B B 1.6
Now = =W = = = 1333
Mol = T T W0 H T 4x107 955

Example 6.11. An iron ring of 3.5 cm’ cross-sectional area with a mean length of 100 cm is
wound with a magnetising winding of 100 turns. A secondary coil of 200 turns of wire is connected
to a ballistic galvanometer having a constant of 1 micro-coulomb per scale division, the total resis-
tance of the secondary circuit being 2000 Q On reversing a current of 10 A in the magnetising coil,
the galvanometer gave a throw of 200 scale divisions. Calculate the flux density in the specimen and

the value of the permeability at this flux density. (Elect. Measure, A.M.I.E Sec.B. 1992)
Solution. Reference may please be made to Art. 6.28.
Here N, = 100;N,=200:4=35x 10*m>; /=100 cm = 1m

k = 10° C/division, 8 = 100 divisions; R, = 2000 £ /=10 A
R -6
B = kOR, _ 10 ><100><200(_)4 — 1.43 Wh/m?
2N,4 2%x200%3.5%10

Magnetising force H = N, I/I=100x 10/1 = 1000 AT/m

w=2_18 1435 10°Hm

H 1000




Magnetism and Electromagnetism 279

Note. The relative permeability is given by p, = / y, = 1.43 X 10%/4n x 107 =1137.

Example 6.12. An iron ring has a mean diameter of 0.1 m and a cross-section of 33.5 X 10°m’.
1t is wound with a magnetising winding of 320 turns and the secondary winding of 220 turns. On
reversing a current of 10 A in the magnetising winding, a ballistic galvanometer gives a throw of 272
scale divisions, while a Hilbert Magnetic standard with 10 turns and a flux of 2.5 X 107 gives a
reading of 102 scale divisions, other conditions remaining the same. Find the relative permeability

of the specimen. (Elect. Measu. A.M.1.E. Sec B, 1991)
Solution. Length of the magnetic path/=n D =0.1 tm
Magnetising Force, H = NI/I=320x 10/0.1 £= 10,186 AT/m
Flux density B =, p, H = 4w x 107 x u,x 10,186 =0.0128 p, ()

Now, from Hilbert’s Magnetic standard, we have
25% 10%x 10 = Kx 102,K=2.45x 10°
On reversing a current of 10 A in the magnetising winding, total change in Weber-turns is
20N, =2.45x 10°x 272 or 2x 220 x ®=2.45x 10° x 272 or ®=1.51x 10° Wb
B=®4=1.51x 10°/33.5x 10° = 0.45 Wb/m’

Substituting this value in Eq. (i), we have 0.0128 u.=0.45, ..p, =35.1

Example 6.13. 4 laminated soft iron ring of relative permeability 1000 has a mean circumfer-
ence of 800 mm and a cross-sectional area 500 mm’. A radial air-gap of 1 mm width is cut in the

ring which is wound with 1000 turns. Calculate the current required to produce an air-gap flux of
0.5 mWhb if leakage factor is 1.2 and stacking factor 0.9. Neglect fringing.

_ D1, @
Solution. Total AT reqd. = @, 5, +®. S, = + -
£ ¢ Ho Ag Uo 1y Az B
Now, air-gap flux @ = 0.5 mWb=0.5x 10° Wb, [,= 1 mm =1 x 10° m; 4, = 500 mm’
=500 10° m’

Flux in the iron ring, D,

1.2x 0.5x 10> Wb
Net cross-sectional area = A, X stacking factor = 500 x 10°x 0.9 m’
0.5x107° x1x10™ L 12x05x 107°x800x107°
4nx107 x500x107°  4mx 1077 x1000x (0.9 x 500x10™°%)
I = 1644/1000 =1.64 A
Example 6.14. A ring has a diameter of 21 cm and a cross-sectional area of 10 cm’. The ring
is made up of semicircular sections of cast iron and cast steel, with each joint having a reluctance

equal to an air-gap of 0.2 mm. Find the ampere-turns required to produce a flux of 8§ X 1 07 Wb. The
relative permeabilities of cast steel and cast iron are 800 and 166 respectively.

total AT reqd. = 1644

Neglect fringing and leakage effects.

Cast Iron
(Elect. Circuits, South Gujarat Univ.) T
Solution. @=8 x 10* Wb ;4 =10 cm’ = 10° m%;
B=8x 107/10" = 0.8 Wb/m
Air gap 0.2 mm 21 Cms 0.2 mm

H=B/uy=0.8/4ntx 107 =6.366 x 10° AT/m
Total air-gap length=2 x 0.2 =0.4 mm
= 4x10*m —
. 5 4 Cast Steel
AT required=H x [=6.366 x 10" x 4x 10~ =255
Cast Steel Path (Fig. 6.34)

-
N
|

Fig. 6.34
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H=B/p,pn,=0.8/4m x 107 x 800 =796 AT/m

path=nD/2=21 w2 =33cm=0.33 m

AT required = Hx [=796 x 0.33 =263

Cast Iron Path

H=0.8/mx 107 x 166 = 3,835 AT/m ; path = 0.33 m

AT required = 3,835 x 0.33=1265

Total AT required = 255+ 263 + 1265 = 1783.

Example 6.15. A4 mild steel ring of 30 cm mean circumference has a cross-sectional area of
6 cm’ and has a winding of 500 turns on it. The ring is cut through at a point so as to provide an
air-gap of 1 mm in the magnetic circuit. It is found that a current of 4 A in the winding, produces a
[flux density of 1 T in the air-gap. Find (1) the relative permeability of the mild steel and (1) induc-
tance of the winding. (F.E. Engg. Pune Univ.)

Solution. (a) Steel ring

H = Bluyn, = 1/4nx 107 x u, AT/m=0.7957 x 10"/u, AT/m

mm.f. = Hx [=(0.7957 x 10"/u)x 29.9x 107=0.2379 x 10%u, AT
(b) Air-gap
H = B/p,=1/4nx 107=0.7957 x 10° AT/m
mm.f.reqd. = Hx [=0.7957 x 10°x (1x 10°)=795.7 AT
Totalm.m.f. = (0.2379 x 10%w) +795.7

NI=500x 4=2000 AT
(0.2379 x 10%u) + 7957 . p =197.5
N® _ NBA _500x1x6x107"
1 1 4

Example 6.16. An iron ring has a X-section of 3 cm’ and a mean diameter of 25 cm. An air-gap
of 0.4 mm has been cut across the section of the ring. The ring is wound with a coil of 200 turns
through which a current of 2 A is passed. If the total magnetic flux is 0.24 mWhb, find the relative
permeability of iron, assuming no magnetic leakage. (Elect. Engg. A.M.Ae.S.1., June 1992)

Solution. ®=0.24 mWb; 4 =3 cm>=3 x 10 m’;

B=®/4=024x 10°/3 x 10* = 0.8 Wb/m’

AT for iron ring = H X [ = (B/pyp,) x 1= (0.8/4mwx 107 x u,)x 0.25=1.59 x IO_S/ur

AT for air-gap = H x = (B/p,) X [=(0.8/41x 107) x 0.4 x 10> =255

Total AT reqd. = (1.59 x IOS/Mr) + 255 ; total AT provided =200 x 2 =400

(1.59 x IOS/ur) +255=400 or . =1096.
Example 6.17. A rectangular iron core is shown in Fig. 6.35. It has a mean length of magnetic

path of 100 cm, cross-section of (2 cm X 2 cm), relative permeability of 1400 and an air-gap of
5 mm cut in the core. The three coils carried by the core have number of turns N, = 335, N, = 600

Total m.m.f. available
@i - 2000

(if) Inductance of the winding = =0.075H

and N, = 600 ; and the respective currents are 1.6 A, 4 A and 3 A. — |_|_ —

The directions of the currents are as shown. Find the flux in_ the 1, |( iR GAP \| Iy

air-gap. (F.Y. Engg. Pune Univ. ) i\ /i
Solution. By applying the Right-Hand Thumb rule, it is found {1 b

that fluxes produced by the current /, and /, are directed in the ll I

clockwise direction through the iron core whereas that produced S — A% T — )

by current /_ is directed in the anticlockwise direction through the ICL

core. Fig. 6.35
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total mm.f. =N, I, + N, [, =N, .= 335 x 1.6+ 600 x 4 —600 x 3 = 1136 AT

. T 5%10° B 6
Reluctance of the air-gap = = — — = 9.946 x 10" AT/Wb
HoAd  4nx107" x4x10
I 100-(0.5)x107

Reluctance of the iron path = =1.414 x 10° AT/Wb

Hol, 4 4nx1077 x1400x 4x 107
Total reluctance = (9.946 + 1.414) x 10°=11.36 x 10° AT/Wb
The flux in the air-gap is the same as in the iron core.

mmf. _ 1136 _00% 10° Wb =100 Wb
reluctance  11.36x10°

Air-gap flux =

Example 6.18. A series magnetic circuit comprises of three sections (1) length of 80 mm with
cross-sectional area 60 mm’, (ii) length of 70 mm with cross-sectional area 80 mm” and (iii) and air-
gap of length 0.5 mm with cross-sectional area of 60 mm’. Sections (i) and (i) are if a material
having magnetic characteristics given by the following table.

H (AT/m) 100 210 340 500 800 1500

B (Tesla) 0.2 0.4 0.6 0.8 1.0 1.2

Determine the current necessary in a coil of 4000 turns wound on section (ii) to produce a flux
density of 0.7 Tesla in the air-gap. Neglect magnetic leakage. (F.E. Pune Univ. May 1990)

Solution. Section (i) It has the same cross-sectional area as the air-gap. Hence, it has the same
flux density i.e. 0.7 Tsela as in the air-gap. The value of the magnetising force H corresponding to
this flux density of 0.7 T as read from the B-H plot is 415 AT/m.

mm.f reqd=HXx [= X X =33.
f.reqd=Hx [=415% (80 x 10°)=33.2 AT

Section (ii) Since its cross-sectional area is different from that of the air-gap, its flux density
would also be different even though, being a series circuit, its flux would be the same.

Air-gap flux=Bx L=0x (60x 10°)=42x 10° Wb
Flux density in this section = 42 x 10°/80 x 10°=0.525T
The corresponding value of the H from the given garph is 285 AT/m
m.m.f. reqd, for this section = 285 x (70 x 10_3) =19.95 AT.
Air-gap
H=Blu,=0.7/41 x 107 =0.557 x 10° AT/m
m.m.f. reqd. = 0.557 x 10° x (0.5 x 107) =278.5 AT
Total m.m.f. reqd. = 33.2 + 19.95 + 278.5 = 331.6
NI=331.6 or I = 331.6/4000 = 0.083 A

Example 6.19. A4 magnetic circuit F B
made of mild steel is arranged as shown
in Fig. 6.36. The central limb is wound T T T “\A’/"-r ______ )\
with 500 turns and has a cross-sectional | T mm |
area of 800 mm’. Each of the outer limbs | |
has a cross-sectional area of 500 mm’. g g
The air-gap has a length of 1 mm. é g &
Calculate the current rquired to set up a § § §
flux of 1.3 mWb in the central limb i
assuming no magnetic leakage and |

to produce flux density of 1.625 T and 850
AT/m to produce flux density of 1.3 T.
(FY. Engg. Pune Univ.) E C
Fig. 6.36

[fringing. Mild steel required 3800 AT/m j&
D
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Solution. Flux in the central limb is = 1.3 mWb = 1.3 x 10> Wb

Cross section A = 800 mm” =800 x 10° m*
: B = ®A=13x 10°/800x 10°
= 1.625T

Corresponding value of A for this flux density is given as 3800 AT/m.

Since the length of the central limb is 120 mm. m.m.f. required is = Hx /=3800x (120x 10° )

=456 AT/m.

Air-gap

Flux density in the air- -gap is the same as that in the central limb.

H = B/u, =1.625/4nt x 107 = 0. 1293 x 107 AT/m

Length of the air-gap = 1 mm = 10°m

m.m.f. reqd. for the air-gap = H x [=0.1293 x 10’ x 10° = 1293 AT.

The flux of the central limb divides equally at point A in figure along the two parallel path ABCD
and AFED. We may consider either path, say ABCD and calculate the m.m.f. required for it. The
same m.m.f. will also send the flux through the other parallel path AFED.

Flux through ABCD = 1.3 x 107°/2 = 0.65 x 10° Wb

Flux density B =0.65x 10%/500x 10°=13T

The corresponding value of H for this value of B is given at 850 AT/m.

m.m.f. reqd. for path ABCD = H x [ =850 x (300 x 10_3) =255AT

As said above, this, m.m.f. will also send the flux in the parallel path AFED.

Total m.m.f. reqd. = 456 + 1293 + 255 = 2004 AT

Since the number of turns is 500, 7 =2004/500 = 4A.

Example 6.20. A4 cast steel d.c. electromagnet shown in Fig. 6.37 has a coil of 1000 turns on its
central limb. Determine the current that the coil should carry to produce a flux of 2.5 mWb in the
air-gap. Neglect leakage. Dimensions are given in cm. The magnetisation curve for cast steel is as
under :

Flux density (Wb/mz) : 0.2 0.5 0.7 1.0 1.2
Amp-turns/metre : 300 540 650 900 1150

(Electrotechnics-1, ; M.S. Univ. Baroda)
Solution. Two points should be noted

(i) there are two (equal) parallel paths €| /=45 ————v
ACDE and AGE across the central path AE.

|

|

(if) flux density in either parallle pathis | | i
half of that in the central path because flux |60 3|0 ™
divides into two equal parts at point 4. |

=)
—
|
o
W
|
|
|
|
e}
T
I

Total m.m.f. required for the whole
electromagnet is equal to the sum of the —
following three m.m.fs. Fig. 6.37

(i) that required for path EF

(if) that required for air-gap

(iii) that required for either of the two parallel paths ; say, path ACDE,

Flux density in the central limb and air gap is

= 25% 107/ (5% 5)x 10* =1 Wb/m?
Corresponding value of H as found from the given data is 900 AT/m.

AT for central limb = 900x 0.3=270
H in air-gap = Blyy =1/ 107 =79.56 x 10" AT/m
AT required = 79. 56>< 10*x 107 =795.6

Flux density in path ACDE is 0.5 Wb/m” for which corresponding value of H is 540 AT/m.
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AT required for path ACDE = 540 x 0.6 =324

Total AT required =270 + 795.6 + 324 = 1390 ;Current required = 1390/1000 = 1.39 A
Example 6.21. 4 cast steel magnetic structure made for a bar of section 8 cm X 2 cm is shown
in Fig. 6.35. Determine the current that the 500 turn-magnetising coil on the left limb should carry

so that a flux of 2 mWb is produced in the right limb. Take . = 600 and neglect leakage.

(Elect. Technology Allahabad Univ. 1993)
Solution. Since path C and D are in parallel with each other w.r.t. path E (Fig. 6.38), the m.m.f.
across the two is the same.

——25cm—— — 25cm ———

QS = S225 Ir E I © D I
15 f

O, x—= = 2x—=— |

T el dl)

@, = 10/3 mWb O_T I :

® = +d=163mWb || —— e — |

Total AT required for the whole circuit is equal to the

sum of Fig. 6.38
(i) that required for path £ and (ii) that required for either of the two paths C or D.
Flux density in path £ = m =40 Wb/m®
yip 3x4x10™ 3
40x0.25
AT reqd. = — =4,420
3x4nx10 " x 600
Flux density in path D = 2x107 _ Wh/m’
ux density in pa %10 m
ATreqd. = ——> % 0.25=1658

4nx107" x 600
Total AT = 4,420 + 1,658 = 6,078 ;
Current needed = 6078/500 = 12.16 A
Example 6.22. A4 ring of cast steel has an external diameter of 24 cm and a square cross-section
of 3 cm side. Inside and cross the ring, an ordinary steel bar 18 cm X 3 cm x 0.4 cm is fitted with
negligible gap. Calculating the number of ampere-turns required to be applied to one half of the

ring to produce a flux density of 1.0 weber per metre” in the other half. Neglect leakge. The B-H
characteristics are as below :

For Cast Steel For Ordinary Plate
B in Wb/m’ 1.0 L1 1.2 B in Wb/m’ 12 |14 | 145
Amp-turn/m 900 1020 1220 Amp-turn/m 590 1200 | 1650

(Elect. Technology, Indore Univ.)

Solution. The magnetic circuit is shown in Fig. 6.39.

The m.m.f. (or AT) produced on the half A acts across the parallel magnetic circuit C and D.
First, total AT across C is calculated and since these amp-turns are also applied across D, the flux
density B in D can be estimated. Next, flux density in A is calculated and therefore, the AT required
for this flux density. In fact, the total AT (or m.m.f.) required is the sum of that required for 4 and that
of either for the two parallel paths C or D.

Value of flux density in C= 1.0 Wb/m®

Mean diameter of the ring = (24 + 18)/2 =21 cm
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Mean circumference =1 X 21 =66 cm
Length of path 4 or C=66/2=33 cm=0.33 m
Value of AT/m for a flux density of 1.0
Wb/m” as seen from the given B.H characteristics
=900 AT/m
Total AT for path C=900 x 0.33 =297. The same
ATs. are applied across path D.
Length of path D = 18 cm = 0.18 m .. AT/m for
path D =297/0.18 = 1650
Value of B corresponding to this AT/m from given table
is = 1.45 Wb/m’
Flux through C=Bx A=1.0% 9x 10°=9x 10* Wb
Flux through D=1.45% (3 x 0.4 x 10%)=1.74x 10* Wb
Total flux through 4 =9 x 10 + 1.74 x 10 =10.74 x 10™ Whb.
Flux density through 4 = 10.74 x 10*9 x 10* = 1.193 Wb/m’
No. of AT/m reqd. to produce this flux density as read from the given table = 1200 (approx.)
Amp-turns required for limb 4 = 1200 x 0.33 =396
Total AT required = 396 + 297 = 693
Example 6.23. Show how the ampere-turns per pole required to produce a given flux in d.c.
generator are calculated.

Fig. 6.39

Find the amp-turns per pole required to produce a flux of 40 mWb per pole in a machine with a
smooth core armature and having the following dimensions :

Length of air gap = 5 mm Area of air-gap = 500 cm’

Length of pole = 12 cm Sectional area of pole core = 325 cm’

Relative permeability of pole core = 1,500

Length of magnetic path in yoke betwen pole = 65 cm

Cross-sectional area of yoke = 450 cm’ ; Relative permeability of yoke = 1,200

Leakage coefficient = 1.2

The ampere-turns for the armature core may be neglected.

Solution. Air-gap ®=40 mWb=4x 10 Wb ; 4 =500 x 10*=5x 107 m’
B=4x10%/5x 10> =0.8 Wb/m” ; H= B/, = 0.8/4n x 107 = 63.63 x 10" AT/m

Air-gap length =5 x 10° m ; AT reqd. = 63.63 x 10*x 5x 10° =3181.5

Pole Core
@ = 12x4x10°=48x 10°Wb; A=325x 10* m?
B = 4.8x 102/325x 10™ = 1.477 Wb/m?
H = By, 1= 1.477/4nx 107 x 1,500 = 783 AT/m
Polelength = 0.12 m ; AT reqd. =783 x 0.12 =94
Yoke Path

flux = halfthe pole flux =0.5%x 4% 10°=2x 10> Wb

A = 450cm’=45% 10° m?; B=2x 102/45x 10° = 4/9 Wh/m>
H=—49 __ _2045 AT/m Yoke length = 0.65 m
4nx 107 x 1,200
Atreqd = 294.5x 0.65, Total AT/pole =3181.5 + 94 + 191.4 = 3,467
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Example 6.24. A shunt field coil is required to develop 1,500 AT with an applied voltage of
60 V. The rectangular coil is having a mean length of turn of 50 cm. Calculate the wire size.
Resistivity of copper may be assumed to be 2 x 10-° Q-cm at the operating temperature of the coil.
Estimate also the number of turns if the coil is to be worked at a current density of 3 Almm’.

(Basis Elect. Machines Nagpur Univ. 1992)

Solution. NI = 1,500 (given) or N-%= N-%)= 1,500
—6
R . Also R— p. L2 2X107° x50
25 A A
4
% - an orA=25% 10% cm® or 4 = 0.25 mm>
2
% = 0/25 or D=0.568 mm
Currentinthe coil = 3x 0.25=0.75 A
Now, NI = 1,500 - N = 1,500/0.75 = 2,000

Example 6.25. A wooden ring has a circular cross-section of 300 sq. mm and a mean diameter
of the ring is 200 mm. It is uniformly wound with 800 turns.

Calculate :

(i) the field strength produced in
the coil by a current of 2 amperes :(as-
sume = 1)

(i) the magnetic flux density pro-
duced by this current and

(iii)  the current required to produce
a flux density of 0.02 wh/m’.
[Nagpur University (Summer 2000)]

Solution. The question assumes )
that the flux-path is through the ring, as )< ??ngf%i;‘r’rf
shown by the dashed line, in figure, at
the mean diameter, in Fig. 6.40.

With a current of 2 amp,

Circularring
with a crosg-section

0of 300 mm

Fig. 6.40

Coilm.m.f. = 800 x 2=1600 AT
Mean length of path = © x0.2
= 0.628 m
) 1
(i H = % = 2548 amp-turns/meter
(ii) B = pyu H=4mx 107 x 1x 2548

= 320x 10° Wb/m’

This Flux density is produced by a coil current of 2-amp

(iif) For producing a flux of 0.02 Wb/m’, the coil current required is
0.02
0.0032
Example 6.26. 4 magnetic core in the form of a closed circular ring has a mean length of 30 cm
and a cross-sectional area of 1 cm’. The relative permeability of iron is 2400. What direct-current
will be needed in the coil of 2000 turns uniformly wound around the ring to create a flux of 0.20 mWb
iniorn ? If an air-gap of 1 mm is cut through the core perpendicualr to the direction of this flux, what
current will now be needed to maintain the same flux in the air gap ?

[Nagpur University Nov. 1999]

= 12.5amp
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Solution.
2
Reluctance of core = —L L= }7 X3OXI?4
Ho o @ 10mx10 " x2400 1x10

30x10”° .

= ——————=995223 MKS unit

41 x 2400 % 1 units

o = 02x 10° Wb

MMF required = ¢ xRel
= 0.2% 107 x 995223 = 199 amp-tunrs
Direct current required through the 2000 turn coil

= 19 _ 0995 amp

2000
Reluctance of 1 mm air gap

3 3
- L (D010 7961783 MKS units
4nx107" 1x107° 4w

Addition of two reluctances

995223 + 7961783 = 8957006 MKS units
MMF required to establish the given flux

= 0.2x 10 x 8957006 = 1791 amp turns
Current required through the coil

_ 1791
= 5000 0.8955 amp
Note : Due to the high permeability of iron, which is given here as 2400, 1 mm of air-gap length is

equivalent magnetically to 2400 mm of length through the core, for comparison of mmf required.

Example 6.27. An iron-ring of mean length 30 cm is made up of 3 pieces of cast-iron. Each
piece has the same length, but their respective diameters are 4, 3 and 2.5 cm. An air-gap of length
0.5 mm is cut in the 2.5 — cm. Piece. If'a coil of 1000 turns is wound on the ring, find the value of the
current has to carry to produce a flux density of 0.5 Wb/m’ in the air gap. B-H curve data of cast-
iron is as follows :

B (Wh/m®) : 0.10 0.20 0.30 0.40 0.50 0.60
H  (AT/m) : 280 680 990 1400 2000 2800
Permeability of free space = 41 x 107

Neglect Leakage and fringing effects. [Nagpur University, November 1998]

Solution. From the data given, plot the B-H curve for cast-iron
The magnetic circuit has four parts connected in series
Part 1. Air-gap 0.5 mm length, B=0.5 wb/m?, and
Permeability of free sapce is known
H, = Bly,=0.5x 10"/(4m) = 398100
AT for gap = (0.5 10°)x H, =199
Part 2. 2.5 cm diameter, 10 — cm long, cast-iron ring portion B and H are to be related with the

help of given data. In this, out of 10 cms. 0.5 mm air-gap is cut, and this portion of ring will have cast-
iron length of 99.5 mm.

For B = 0.5wb/m’, H,=2000AT/m
AT, = 2000 x 9.95x 107 =199
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N
i
]
|

1 1 1 1 1 J
1000 2000 3000

H —»(AT/m)
Fig. 6.41
Part 3. 3-cm diameter, 10-cm long, cast-iron ring-portion.
Here B=0.50 x (2.5/3)* = 0.347 Wb/m®
For this B, H is read from B-H curve.
H,=1183 AT/m
AT;=1183 x 10 x 107 =1183
Part4. 4 cm. Diameter, 10 cm long, cast-iron ring portion.
Here, B=0.50 x (2.5 x 4)*x 0.195 Wb/m®
From, B—H curve, corresponding H is 661
AT, =661 x 10x 107 =66 AT
Since all these four parts in series, the total m.m.f. required is obtained by adding the above terms.
AT =199 + 199 + 118 + 66 = 582
Coil Current = 582/1000 = 0.582 amp
Additional observations.

(a) The 2.5-cm diameter portion of the ring has H = 2000 for B = 0.5 Wb/m®. From this, the
relative permeability of cast-iron can be foud out.

Uy 1, = 0.5/2000, giving . = 199
An air-gap of 0.5 mm is equivalent of 99.5 mm of cast-iron length. Hence, the two m.m.fs. are
equal to 199 each.

(b) The common flux for this circuit is obtained from flux-density and the concerned area.
Hence O = 0.5% (W4)x (2.5% 10%)*=0.02453 x 107

= 0.2453 mWb
Reluctance of total magnetic circuit

= m.m.f/flux = 582/(2.453 x 104)

= 2372650 MKS units

Example 6.28. A4 steel-ring of 25 cm mean diameter and of circular section 3 cm in diameter
has an air-gap of 1.5 mm length. It is wound uniformly with 700 turns of wire carrying a current of
2 amp. Calculate : (i) Magneto motive force (ii) Flux density (iii) Magnetic flux (V) Relative perme-
ability. Neglect magnetic leakage and assume that iron path takes 35 % of total magneto motive
force. [Nagpur University, April 1996]
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Solution. From the given data, length of mean path in the ring (= L, ) is to be calculated. For a
mean diameter of 25 cm, with 1.5 mm of air-gap length.

L, =(n x025)<1.5x 10°)=0.7835 m

Cross-sectional area of a 3 cm diameter ring = 7.065 x 10* sq.m.

Total m.m.f. due to coil = 700 x 2 = 1400 amp-turns

Since iron-path takes 355 of the total mmf, it is 490.

Remaining mmf of 910 is consumed by the air-gap.

Corresponding H for air-gap = 910/(1.5 X 10_3) = 606666 amp-turns/m.

If Flux density is B,, we have

B, = pyH,=4mx 107 x 606666 = 0.762 Wb/m’

Iron-ring and air-gap are in series hence their flux is same. Since the two have some cross-
sectional area, the flux density is also same. The ring has a mean length of 0.7835 m and needs an
mmf of 490. For the ring.

H = 490/0.7845 = 625.4 amp-turns / m
UM, = B/H=0.752/625.4=1218 x 10°
W= (1218 x 10%) /(4 mx 107) =970
Flux Flux density x Cross-sectional area =0.762 X 7.065 x 10* = 0.538 milli-webers

Check. p,0f970 means that 1.5 mm of air-gap length is equivalent to (1.5 X 10° x 970)=1.455

m of length through iron as a medium. With this equivalent.
mmf of ring _ 0.785 0235
mmf for (ring + air-gap) 0.785 +1.455

which means that 35 % of total mmf is required for the ring

Example 6.29. (@) Determine the amp-turns required to produce a flux of 0.38 mWb in an iron-
ring of mean diameter 58 cm and cross-sectional area of 3 sq. cm. Use the following data for the
ring :

B Wh/m® 0.5 1.0 12 1.4
U, 2500 2000 1500 1000
(b) If a saw-cut of Imm width is made in the ring, calculate the flux density in the ring, with the
mmf remaining same as in (a) above. [Nagpur University, Nov. 1996]

Solution. Plot the B- , curve as in Fig. 6.42

—+2500

— 2000 -

— 1500 -

M,

— 1000 -

— 500 -

0,0 0.5 1.0 12 14

B > Wb/m’
Fig. 6.42
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(a) Cross-sectional area =3 sq. cm =3 x 107 sq. m.
Flux =38 mWb = 0.38 x 10° Wb
Flux density, B = flux/area = (0.38 x 10°)/(3 x 10™) = 1.267 Wb/m®
Looking into the table relating B and i, interpolation is required for evaluating p. for 8=1.267
Wb/m®. After 1.2 Wb/m?, 1, decreases by 500 for a rise of 0.2 in B. Interpolation results into :
b, = 1500 20T 500 =1332
For mean diameter of path in the ring as 0.58 m, the length of the magnetic path in the ring is
I = px058=1.8212m

Since B = y,u, H,
H = 1.267/(4nx 107 x 1332) =757
Hence, the required m.m.f. is
757 1.8212 = 1378 amp-turns

(b) Ifasaw-cut of | mm is cut in the ring, B is to be calculated with a m.m.f. of 1378. Now the
magnetic circuit has two components in series : the ring with its B-1,. curve in Fig. 6.42 and the air-
gap. Since B is not known, p, cannot be accurately known right in the initial steps. The procedure to
solve the case should be as follows :

Let B the flux density as a result of 1378 amp-turns due to the coil.
For air-gap. H, = B,/ (4mx 107)=0.796 x 10° AT/m
AT, = H,x [,=0.796x 10°x 1% 10°x B, =796 B,

Due to the air-gap, the flux-density is expected to be between 0.5 and 1 Wb/mz, because, in (a)
above, L, (for B=1.267 Wb/mz) is 1332. One mm air-gap is equivalent to 1332 mm of path added
in iron-medium. This proportional increase in the reluctance of the magnetic circuit indicates that
flux density should fall to a value in between 0.5 and 1 Wb/m®.

For Iron-ring. With flux density expected to be as mentioned above, interpolation formula for
W, can be written as :

i, = 2500 =500 [(B, —0.50) / 0.50] = 3000 —1000 B,
H; = B,/ (1 1,) =B,/ 1, (3000 ~1000 B,)]
Total m.m.f. = AT g TAT;=1378, as previously calculated
1.8212x B,

Hence, 1378 =
Uy (3000 —1000 Bg)

+ 796 Bg

This is a quadratic equation in B, and the solution, which gives B, in between 0.5 & 1.0 Wb/m®
is acceptable.

This results into B, = 0.925 Wb/m’
Corresponding u,. = 30001000 x 0.925 = 2075

Example 6.30. An iron-ring of mean diameter 19.1 cm and having a cross-sectional area of
4 sq. cm is required to produce a flux of 0.44 mWb. Find the coil-mmf required.

If a saw-cut 1 mm wide is made in the ring, how many extra amp-turns are required to maintain
the same flux ?

B - 1, curve is as follows :

B (Wb/m’) 0.8 1.0 1.2 14

u, 2300 2000 1600 1100
[Nagpur University, April 1998]

Solution. For a mean-diameter of 19.1 cm, Length of mean path, /, =7t x 0.191=0.6 m
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Cross-sectional area = 4 sq.cm =4 X 10% m’

Flux, 0= 0.44 mWb = 0.44 x 10> Wb

Flux density, B = 0.44 x 10°/(4 x 10 = 1.1 Wb/m®

For this flux density, i, = 1800, by simple interpolation.

H=B/(uu)=1.1x 10"/(4nx 1800) =486.5 amp-turns/m.

m.m.frequired=H X [, =486.5x 0.60 =292

A saw-cut of 1 mm, will need extra mmf.

H,=BJu,=1.1x 10/(4r) = 875796

AT, = H,x 1,=875796 X 1.0 x 10° =876

Thus, additional mmf required due to air-gap = 876 amp-turns

Example 6.31. 4 680-turn coil is wound on the central limb of a cast steel frame as shown in

Fig. 6.43 (a) with all dimensions in cms. A total flux of 1.6 mWb is required in the air-gap. Find the
current in the magnetizing coil. Assume uniform flux distribution and no leakage. Data for B-H

curve for cast steel is given. [Nagpur University, Novemeber 1997]

¢ « k
............. T—— I
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Fig. 6.43 (a)
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<+—Fg —»|¢— Fc —»
)
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1 1 1 1 1 )
400 800 1000

H —p(AT/m)

Fig. 6.43 (b) Fig. 6.43 ()

Solution. ) 1.6 mWb through air-gap and central limb
&2 = 0.8 mWb through yokes
Corresponding flux densities are :
B,=B, = 1.6mWb/(16 x 10) = 1.0 Wb/m’
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= 0.8 m Wb/(16 x 10™) = 0.50 Wb/m®
MMEF-Calculations :
(a) For Air gap : For B, of 1 Wb/m?, H,=1. O/uo
AT, = ngl [1/(4n>< 107)] x (0.1 x 107)
= 796 amp turns
(b) For Central limb: AT, = H,x [, =900x 0.24=216
For B, = 1.00, H, from data = 900 AT/m

The yokes are working at a flux-density of 0.50 Wb/m?. From the given data and the correspond-
ing plot, interpolation can be done for accuracy.
H, = 500 + [(0.5 -0.45)/(0.775 —0.45)] x 200
= 530 AT/m
F, = 530%0.68=360
Total mmf required = 796 + 216 + 360 = 1372
Hence, coil-current 1372/680=2.018 A
Example 6.32. For the magnetic circuit shown in fig. 6.44 the flux in the right limb is 0.24 mWb
and the number of turns wound on the central-limb is 1000. Calculate (1) flux in the central limb
(ii) the current required.

The magnetization curve for the core is given as below :

H (AT/m) : 200 400 500 600 800 1060 1400

B (Nb/m,) : 0.4 0.8 1.0 1.1 1.2 1.3 1.4
Neglect Leakage and fringing. [Rajiv Gandhi Technical University, Bhopal, Summer 2001]

—— 10cm —»4¢—10cm ——p
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—» (2 l—
e} . cm
16 sq.cm
Aree(ll C\\
15cm (\ 15cm
C\\
680 T~
turns O——
» 4
v o v
) 4 v
2cm 2cm

core thickness =3 cm

Fig. 6.44

Solution. Area of cross-section of side-limbs =2 X 3 =6 sq.cm
Area of cross-section of core =3 X 4 =12 sq.cm

Flux in side Limbs = 0.24 mWb

Flux density in side Limbs = (0.24 x 107)/(6 x 10™) = 0.4 Wb/m®

Since the coil is wound on the central limb and the magnetic circuit is symmetrical, the flux in the
central limb = 0.48 mWb. Flux density in the central limb = (0.48 x 107)/(12 x 10™) = 0.4 Wb/m’

For the flux density of 0.40 Wb/mz, H=200AT/m
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Central Limb has a path length of 15 cm.

Other part carrying 0.24 mWb has a total path length of 35 cm.
Total mmf required = (200 x 0.15) + (200 x 0.35) =100 AT
Hence, coil current = 100/1000 = 0.1 Amp.

Example 6.33. A4 ring composed of three sections. The cross-sectional area is 0.001 m’ for
each section. The mean arc length arel,=0.3m, |, =0.2m, 1, = 0.1 m. An air-gap length of 0.1 mm
is cut in the ring. Mr for sections a, b, ¢ are 5000, 1000, and 10,000 respectively. Flux in the air gap

is 7.5 x 10* Wb. Find (i) mmf (ii)
sections.
Solution.

exciting current if the coil has 100 turns, (1i1) reluctances of the
[Nagpur University April 1999]
Area = 0.001 sq.m
1,=03m, [, = 02m, [,=0.1m, [,=0.1x 10°m
W, = 5000, p, = 1000, w, =10,000 y,=4mx 107

o = 7.5% 10* Wb

(iif) Calculations of Reluctances of four parts of the magnetic circuit :

-3
(@) Reluctance of air gap, R,, = 1 0IXI0 7 1000 79618
s o 0.001 41 x0.001
(b) Reluctance of section ‘a’ of ring
1 0.3 10" % 0.3
= = = =47770
« o 0.001 4w x47770 x 5000 X 0.001
(c) Reluctance of section ‘b’ of the ring
1 0.20 10’ 0.10
= = = X =
R uu, 0.001 4mx1000  0.001 15923.6
(d) Reluctance of section ‘¢’ of the ring
1 0.10 10’ 0.10
= = X = X =
R.. Ui, 0.001 4mx1000  0.001 7961

(M)

(i)

Total Reluctance Reg +R,, TR, TR, =294585

Flux X Reluctance
= 7.5% 10™ x 294585 =221 amp-turns
221/100 =2.21 amp

Total mmf required

Current required

Tutorial Problems No. 62

An iron specimen in the form of a closed ring has a 350-turn magnetizing winding through which is
passed a current of 4A. The mean length of the magnetic path is 75 cm and its cross-sectional area is
1.5 cm®. Wound closely over the specimen is a secondary winding of 50 turns. This is connected to
a ballistic glavanometer in series with the secondary coil of 9-mH mutual inductance and a limiting
resistor. When the magnetising current is suddenly reversed, the galvanometer deflection is equal to
that produced by the reversal of a current of 1.2 A in the primary coil of the mutual inductance.
Calculate the B and H values for the iron under these conditions, deriving any formula used.

[1.44 Wb/m? ; 1865 AT/m] (London Univ.)
A moving-coil ballistic galvanometer of 150 Q gives a throw of 75 divisions when the flux through
a search coil, to which it is connected, is reversed.
Find the flux density in which the reversal of the coil takes place, given that the galvanometer con-

stant is 110 pC per scale division and the search coil has 1400 turns, a mean are of 50 cm” and a
resistance of 20 Q. [0.1 Wh/m?] (Elect. Meas. & Measuring Inst. Gujarat Univ.)
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. A fluxmeter is connected to a search coil having 500 turns and mean area of 5 cm”. The search coil

is placed at the centre of a solenoid one metre long wound with 800 turns. When a current of 5 A is
reversed, there is a deflection of 25 scale divisions on the fluxmeter. Calculate the flux-meter constant.
[10'4 Whb-turn/division] (Elect. Meas. & Measuring Inst., M.S. Univ. Baroda)
An iron ring of mean length 50 cms has an air gap of | mm and a winding of 200 turns. If the
permeability of iron is 300 when a current of 1 A flows through the coil, find the flux density.

[94.2 mWb/m®] (Elect. Engg. A.M.Ae.S.1.)
An iron ring of mean length 100 cm with an air gap of 2 mm has a winding of 500 turns. The relative

permeability of iron is 600. When a current of 3 A flows in the winding, determine the flux density.
Neglect fringing. [0.523 Wb/mz] (Elect. Engg. & Electronic Bangalore Univ. 1990)

. A coil is wound uniformly with 300 turns over a steel ring of relative permeability 900, having a

mean circumference of 40 mm and cross-sectional area of 50 mm?”. If a current of 25 amps is passed
through the coil, find (/) m.m.f. (if) reluctance of the ring and (ii7) flux.

[(i) 7500 AT (ii) 0.7 x 10° AT/Whb (iii) 10.7 mWh]
(Elect. Engg. & Electronics Bangalore Univ.)

. A specimen ring of transformer stampings has a mean circumference of 40 cm and is wound with a

coil of 1,000 turns. When the currents through the coil are 0.25 A, 1 A and 4 A the flux densities in
the stampings are 1.08, 1.36 and 1.64 Wb/m® respectively. Calcualte the relative permeability for
each current and explain the differences in the values obtained. [1,375,434,131]

. A magnetic circuit consists of an iron ring of mean circumference 80 cm with cross-sectional area 12

cm’ throughout. A current of 2A in the magnetising coil of 200 turns produces a total flux of 1.2
mWhb in the iron. Calculate :

(a) the flux density in the iron
(b) the absolute and relative permeabilities of iron
(c) the reluctance of the circuit
[1 Wb/m? ; 0.002, 1,590 ; 3.33 x 10° AT/Whb]

. A coil of 500 turns and resistance 20 Qis wound uniformly on an iron ring of mean circumference 50

cm and cross-sectional area 4 cm”. It is connected to a 24-V d.c. supply. Under these conditions, the
relative permeability of iron is 800. Calculate the values of :
(a) the magnetomotive force of the coil (b) the magnetizing force
(c) the total flux in the iron (d) the reluctance of the ring

[(a) 600 AT (b) 1,200 AT/m (c) 0.483 mWhb (d) 1.24 x 10° AT/Wb]
A series magnetic circuit has an iron path of length 50 cm and an air-gap of length 1 mm. The cross-
sectional area of the iron is 6 cm® and the exciting coil has 400 turns. Determine the current required
to produce a flux of 0.9 mWb in the circuit. The following points are taken from the magnetisation
characteristic :
Flux density (Wb/m?) : 1.2 1.35 1.45 1.55
Magnetizing force (AT/m) : 500 1,000 2,000 4,500 [6.35 A]
An iron-ring of mean length 30 cm is made of three pieces of cast iron, each has the same length but
their respective diameters are 4, 3 and 2.5 cm. An air-gap of length 0.5 mm is cut in the 2.5 cm piece.
If a coil of 1,000 turns is wound on the ring, find the value of the current it has to carry to produce a
flux density of 0.5 Wb/m® in the air gap. B/H characteristic of cast-iron may be drawn from the
following :
B (Wb/m?) : 0.1 0.2 0.3 0.4 0.5 0.6
(AT/m) : 280 620 990 1,400 2,000 2,8000 [0.58 A]
Permeability of free space = 41 X 10" H/m. Neglect leakage and fringing.
The length of the magnetic circuit of a relay is 25 cm and the cross-sectional area is 6.25 cm’. The
length of the air-gap in the operated position of the relay is 0.2 mm. Calculate the magnetomotive
force required to produce a flux of 1.25 mWb in the air gap. The relative permeability of magnetic
material at this flux density is 200. Calculate also the reluctance of the magnetic circuit when the
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13.

14.

15.

16.

17.

relay is in the unoperated position, the air-gap then being 8 mm long (assume p,, remains constant).
[2307 AT, 1.18 x 10" AT/Wb]

For the magnetic circuit
shown in Fig. 6.45, all di- I
mensions are in cm and all R ———— — 2% oA
the air-gaps are 0.5 mm wide. i c

Net thickness of the core is
3.75 cm throughout. The
turns are arranged onthecen- ~ f———— o — i °B
tre limb as shown.

Calculate the m.m.f. required
to produce a flux of 1.7 mWb
in the centre limb. .Neglect Fig. 6.45 Fig. 6.46

the leakage and fringing. The

magnetisation data for the material is as follows :

H (AT/m) : 400 440 500 600 800

B (Wb/m®) : 0.8 0.9 1.0 1.1 1.2 [1,052 AT]

In the magnetic circuit shown in Fig. 6.46 a coil of 500 turns is wound on the centre limb. The
magnetic paths 4 to B by way of the outer limbs have a mean length of 100 cm each and an effective
cross-sectional area of 2.5 cm”. The centre limb is 25 cm long and 5cm” cross-sectional area. The
air-gap is 0.8 cm long. A current of 9.2 A through the coil is found to produce a flux of 0.3 mWb.

20

The magnetic circuit of a choke is shown in Fig. 6.47. It is designed so that the flux in the central
core is 0.003 Wb. The cross-section is square and a coil of 500 turns is wound on the central core.
Calculate the exciting current. Neglect leakage and assume the flux to be uniformly distributed along
the mean path shown dotted. Dimensions are in cm.

The characteristics of magnetic circuit are as given below :
B (Wb/m?) : 0.38 0.67 1.07 1.2 1.26
H (AT/m) : 100 200 600 1000 1400

(Elect. Technology 1. Gwalior Univ.)
A 680-turn coil is wound on the central limb of the cast steel sheet frame as shown in Fig. 6.48 where
dimensions are in cm. A total flux of 1.6 mWb is required to be in the gap. Find the current required
in the magnetising coil. Assume gap density is uniform and all lines pass straight across the gap.
Following data is given :
H (AT/m) : 300 500 700 900 1100
B (Wb/mz) : 0.2 0.45 0.775 1.0 1.13

(Elect. Technology ; Indore Univ.)
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Fig. 6.47 Fig. 6.48

In the magnetic circuit of Fig. 6.49, the core is composed of annealed sheet steel for which a stacking
factor of 0.9 should be assumed. The core is 5 cm thick. When @, =0.002 Wb, @, = 0.0008 Wb and
@, =0.0012 Wb. How many amperes much each coil carry and in what direction ? Use of the
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following magnetisation curves can be made for solving the problem.

B (Wb/m®) : 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8

H (AT/m’) : 50 100 130 200 320 1200 3800 10,000
(Elect. Technology, Vikram Univ.)
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Fig. 6.49
A magnetic circuit with a uniform cross-sectional area of 6 cm’ consists of a steel ring with a mean

magnetic length of 80 cm and an air gap of 2 mm. The magnetising winding has 540 ampere-turns.
Estimate the magnetic flux produced in the gap. The relevant points on the magnetization curve of
cast steel are :

B (Wb/m?) : 0.12 0.14 0.16 0.18 0.20

H (AT/m) : 200 230 260 290 320
[0.1128 m Wh] (City & Guilds, London)

Explain the terms related to magnetic circuits :

(i) reluctance (i) flux density (iii) magnetomotive force (Nagpur University, Summer 2002)
A metal ring of mean diameter of 80 cm is made out of two semi-circular pieces of cast iron and
cast steel separated at junctions by pieces of copper each of 1 mm thickness. If the ring is uniformly
wound with 1000 turns, calculate the value of current required to produce a flux density of 0.85
wb/nV in the ring.

Given that relative permeability of cast iron as 200, that of cast steel is 1200 and for copper,
m.= I (Nagpur University, Summer 2002)
A 1154 turns coil is wound on the central limb of the case steel frame shown in Fig. 6.50. A total
flux of 1.6 mwb is required in the air gap. Find the current required through the gap. Assume that
the gap density is uniform and there is no leakage. Frame dimensions are given in cm. Take

permeability of cast steel as 1,200. (Nagpur University, Winter 2002)
v
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Fig. 6.50
Explain the terms related to magnetic circuits :
(i) Reluctance (ii) Flux density (iii) Coercive force (iv) Magnetomotive force (v) Residual flux.
(Nagpur University, Summer 2003)
Compare electric and magnetic circuit by their similarities and dissimilarities.
(Nagpur University, Winter 2003)
Compare electric and magnetic circuits with respect to their similarities and dissimilarities.
(Nagpur University, Summer 2004)
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Electrical Technology

A steel wire of 25 cm mean diameter and circular cross section 3 cm in diameter has an airgap of
I mm wide. It is wound with a coil of 700 turns carrying a current of 2 A.
Calculate : (/) m.m.f. (ii) Flux density (iii) Reluctance (iv) Relative permeability.

Assume that iron path take 30% of total m.m.f. (Gujrat University,Summer 2003)
What is a search coil in magnetic measurements? (Anna University, April 2002)
Name the magnestic squares used to find iron loss. (Anna University, April 2002)

What is a magnetic circuit? A magnetic circuit is made up of 3 limbs A, B and C in prallel. The
reluctances of the magnetic paths of A, B and C in AT/mWb are 312, 632.6 and 520 respectively.
An exciting coil of 680 turns is wound on limb B. Find the exciting current to produce of flux of
Imwb in the limb A. (V.T.U., Belgaum Karnataka University, February 2002)
An iron ring of 300cm mean circumference with a cross section of 5cm? is wound uniformly with
350 turns of wire. Find the current required to produce a flux of 0.5 Mwb in iron. Take relative
permeability of iron as 400. (V.T.U. Belgaum Karnataka University, July/August 2002)
What is Biot-Savart law? Explain briefly. Find the magnetic field due to a small circular loop carrying
current [ at distances from loop that are large compared with its dimensions.

(Agra Univ. 1978 Supp.)

Magnetic potential (Mumbai University, 2002) (RGPV, Bhopal 2001)
Flux density (Pune University,2002) (RGPV, Bhopal 2001)
Susceptibility (Mumbai University, 2002) (RGPV, Bhopal 2001)
Define mm f, flux, reluctance, absolute and relative permeabilities with reference to magnetic circuits.

( U.P. Technical University 2003) (RGPV, Bhopal 2002)

Discuss B-H curve of a ferro-magnetic material and explain the following.
(i) Magnetic saturation (if) Hysteresis (ii7) Residual magnetism (iv) Coercive force

(RGPV, Bhopal 2002)
What is meant by leakage and fringing? Define leakage coefficient.

(RGPV, Bhopal 2002)
Define the following terms (any five) :
(i) MMF (ii ) Reluctance (iif) Permeance (iv) Magnetisation curve (v) flux density
(vi) Magnetizing force (vii) Susceptibility (viii) Relative permeability (ix) Magnetic potential

(RGPV, Bhopal 2002)

38. Distinguish between leakage and fringing of flux. (RGPYV, Bhopal 2002)
39. Explain fringing of magnetic flux, magnetic leakage, staturation of ferowegnetic materials, B-H
Curve, hysteresis and eddy current losses. (RGPV, Bhopal 2003)
OBJECTIVETESTS -6
1. Relative permeability of vacuum is (c) directly as its radius
(@) 4nx 107 H/m () 1H/m (d) inversely as its radius
(o 1 (d) l/4m 4. A pole of driving point admittance function
2. Unit of magnetic flux is implies
(a) weber (b) ampere-turn (a) zero current for a finite value of driving
(c) tesla (d) coulomb voltage
3. Point out the. WRONG statement. (b) zero voltage for a finite value of driving
The magnetising force at the centre of a current
c1rcu1a.r coil varies. . (c) an open circuit condition
(a) d%rectly as the number of its turns (d) None of (a), (b) and (c) mentioned in
(b) directly as the current the question (ESE 2001)

ANSWERS
1. ¢ 2. a 3. a
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a hydro-electric generator. Electric
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etc., work based on the principle of
electromagnetic induction
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7.1. Relation Between Magnetism and Electricity

It is well known that whenever an electric current flows through a conductor, a magnetic field is
immediately brought into existence in the space surrounding the conductor. It can be said that when
electrons are in motion, they produce a magnetic field. The converse of this is also true i.e. when a
magnetic field embracing a conductor moves relative to the conductor, it produces a flow of electrons
in the conductor. This phenomenon whereby an e.m.f. and hence current (i.e. flow of electrons) is
induced in any conductor which is cut across or is cut by a magnetic flux is known as electromagnetic
induction. The historical background of this phenomenon is this :

After the discovery (by Oersted) that electric current produces a magnetic field, scientists began
to search for the converse phenomenon from about 1821 onwards. The problem they put to them-
selves was how to ‘convert’ magnetism into electricity. It is recorded that Michael Faraday™ was in
the habit of walking about with magnets in his pockets so as to constantly remind him of the problem.
After nine years of continuous research and experimentation, he succeeded in producing electricity
by ‘converting magnetism’. In 1831, he formulated basic laws underlying the phenomenon of elec-
tromagnetic induction (known after his name), upon which is based the operation of most of the
commercial apparatus like motors, generators and transformers etc.

7.2. Production of Induced E.M.F. and Current

In Fig. 7.1 is shown an insulated coil whose terminals are connected to a sensitive galvanometer
G. Itis placed close to a stationary bar magnet initially at position AB (shown dotted). As seen, some
flux from the N-pole of the magnet is linked with or threads through the coil but, as yet, there is no
deflection of the galvanometer. Now, suppose that the magnet is suddenly brought closer to the coil in
position CD (see figure). Then, it is found that there is a jerk or a sudden but a momentary deflection

Fig. 7.1. Fig. 7.2.

in the galvanometer and that this lasts so long as the magnet is in motion relative to the coil, not
otherwise. The deflection is reduced to zero when the magnet becomes again stationary at its new
position CD. It should be noted that due to the approach of the magnet, flux linked with the coil is
increased.

Next, the magnet is suddenly withdrawn away from the coil as in Fig. 7.2. It is found that again
there is a momentary deflection in the galvanometer and it persists so long as the magnet is in
motion, not when it becomes stationary. It is important to note that this deflection is in a direction
opposite to that of Fig. 7.1. Obviously, due to the withdrawal of the magnet, flux linked with the coil
is decreased.

The deflection of the galvanometer indicates the production of e.m.f. in the coil. The only cause
of the production can be the sudden approach or withdrawal of the magnet from the coil. It is found
that the actual cause of this e.m.f. is the change of flux linking with the coil. This e.m.f. exists so long
as the change in flux exists. Stationary flux, however strong, will never induce any e.m.f. in a station-
ary conductor. In fact, the same results can be obtained by keeping the bar magnet stationary and
moving the coil suddenly away or towards the magnet.

*  Michael Faraday (1791-1867), an English physicist and chemist.
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The direction of this electromagnetically-
induced e.m.f. is as shown in the two figures given
on back page.

The production of this electromagnetically-
induced e.m.f. is further illustrated by considering
a conductor AB lying within a magnetic field and
connected to a galvanometer as shown in Fig. 7.3.
It is found that whenever this conductor is moved
up or down, a momentary deflection is produced
in the galvanometer. It means that some transient Fig. 7.3
e.m.f. is induced in AB. The magnitude of this
induced e.m.f. (and hence the amount of deflection in the galvanometer) depends on the quickness of
the movement of AB.

From this experiment we conclude that whenever a conductor cuts or shears the magnetic flux,
an e.m.f. is always induced in it.

It is also found that if the conductor is moved parallel to the direction of the flux so that it does
not cut it, then no e.m.f. is induced in it.

7.3. Faraday’s Laws of Electromagnetic Induction

Faraday summed up the above facts into two laws known as Faraday’s Laws of Electromagnetic
Induction.

First Law. It states :

Whenever the magnetic flux linked with a circuit changes, an e.m.f. is always induced in it.

or

Whenever a conductor cuts magnetic flux, an e.m.f. is induced in that conductor.

Second Law. It states :

The magnitude of the induced e.m.f. is equal to the rate of change of flux-linkages.

Explanation. Suppose a coil has N turns and flux through it changes from an initial value of &,
webers to the final value of ®, webers in time t seconds. Then, remembering that by flux-linkages
mean the product of number of turns and the flux linked with the coil, we have

Initial flux linkages = N®,, add Final flux linkages = N®,

N®D, - Nd

induced em.f. e= L Whb/s or voltore=N w volt

Putting the above expression in its differential form, we get
d d
=— (N® = N —- volt
o NP dt ¢
Usually, a minus sign is given to the right-hand side expression to signify the fact that the induced
e.m.f. sets up current in such a direction that magnetic effect produced by it opposes the very cause
producing it (Art. 7.5).

dt
Example 7.1. The field coils of a 6-pole d.c. generator each having 500 turns, are connected in
series. When the field is excited, there is a magnetic flux of 0.02 Wb/pole. If the field circuit is
opened in 0.02 second and residual magnetism is 0.002 Whb/pole, calculate the average voltage
which is induced across the field terminals. In which direction is this voltage directed relative to the
direction of the current.

Solution. Total number of turns, N 6 x 500=3000
Total initial flux = 6% 0.02=0.12 Wb
Total residual flux = 6x 0.002=0.012 Wb
Change in flux, d® = 0.12 —0.012 = 0.108 Wb
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Time of opening the circuit, dt = 0.02 second

ooy de 0.108
Inducede.m.f. = N Qi volt = 3000 x 0.0

The direction of this induced e.m.f. is the same as the initial direction of the exciting current.
Example 7.2. A coil of resistance 100 Qis placed in a magnetic field of 1 mWh. The coil has

100 turns and a galvanometer of 400 Qresistance is connected in series with it. Find the average
e.m.f. and the current if the coil is moved in 1/10th second from the given field to a field of 0.2 mWh.

=16,200 V

. do
Solution. Inducede.m.f. = N “q volt
Here d® = 1-02=08mWb=0.8x 10° Wb
dt = 1/10=0.1 second ; N =100
e = 100x 0.8 x 10°/0.1=0.8V

Total circuit resistance 100 + 400 = 500 Q
- Current induced = 0.8/500=1.6 x 10> A =16 mA
Example 7.3. The time variation of the flux linked with a coil of 500 turns during a complete
cycle is as follows :
@ = 0.04 (1 4 t/T) Weber 0<t<T/2
@ = 0.04 (4t/T —3) Weber TR <t<T
where T represents time period and equals 0.04 second. Sketch the waveforms of the flux and in-
duced e.m.f. and also determine the maximum value of the induced e.m.f..

2000 V
) 0.04 Wb o
to\ | / . t
T
T 4 T/2 3Ty h T T/2
Fig. 7.4.

Solution. The variation of flux is linear as seen from the following table.
t (second) : 0 T/4 T/2 3T/4 T
F (Weber) : 0.04 0 —-0.04 0 0.04

The induced e.m.f. is given by e = —Nd d/dt

Fromt=0to t=T/2, d&dt=-0.04 x 4/T =—-4 Wb/s ..e=-500 (—4) =2000 V
Fromt=T/2tot=T, dd/dt=0.04 x 4/T=4Wb/s ..e=-500x 4=-2000 V.
The waveforms are selected in Fig. 7.4.

7.4. Direction of induced e.m.f. and currents

There exists a definite relation between the direction of the induced current, the direction of the
flux and the direction of motion of the conductor. The direction of the induced current may be found
easily by applying either Fleming’s Right-hand Rule or Flat-hand rule or Lenz’s Law. Fleming’s rule
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(Fig. 7.5) is used where induced e.m.f. is due to flux-cutting (i.e., dynamically induced e.m.f.) and
Lenz’s when it is used to change by flux-linkages (i.€., statically induced e.m.f.).

g o
'g Direction
s o of Motion
Direction of
i T Induced emf
ol /A
/A
/
/e N

Fig. 7.5. Fig. 7.6.

Fig. 7.6 shows another way of finding the direction of the induced e.m.f. It is known as Right

Flat-hand rule. Here, the front side of the hand is held perpendicular to the incident flux with the

thumb pointing in the direction of the motion of the conductor. The direction of the fingers give the
direction of the induced e.m.f. and current.

7.5. Lenz’s Law

The direction of the induced current may also be found by this law which was formulated by
Lenz* in 1835. This law states, in effect, that electromagnetically induced current always flows in
such direction that the action of the magnetic field set up by it tends to oppose the very cause which
produces it.

This statement will be clarified with reference to Fig. 7.1 and 7.2. It is found that when N-pole
of the bar magnet approaches the coil, the induced current set up by induced e.m.f. flows in the anti-
clockwise direction in the coil as seen from the magnet side. The result is that face of the coil
becomes a N-pole and so tends to oppose the onward approach of the N-Pole of the magnet (like
poles repel each other). The mechanical energy spent in overcoming this repulsive force is converted
into electrical energy which appears in the coil.

When the magnet is withdrawn as in Fig. 7.2, the induced current flows in the clockwise direc-
tion thus making the face of the coil (facing the magnet) a S-pole. Therefore, the N-pole of the magnet
has to withdrawn against this attractive force of the S-pole of coil. Again, the mechanical energy
required to overcome this force of attraction is converted into electric energy.

It can be shown that Lenz’s law is a direct consequence of Law of Conservation of Energy.
Imagine for a moment that when N-pole of the magnet (Fig. 7.1) approaches the coil, induced current
flows in such a direction as to make the coil face a S-pole. Then, due to inherent attraction between
unlike poles, the magnet would be automatically pulled towards the coil without the expenditure of
any mechanical energy. It means that we would be able to create electric energy out of nothing, which
is denied by the inviolable Law of Conservation of Energy. In fact, to maintain the sanctity of this law,
itis imperative for the induced current to flow in such a direction that the magnetic effect produced by
it tends to oppose the very cause which produces it. In the present case, it is relative motion of the
magnet with magnet with respect to the coil which is the cause of the production of the induced
current. Hence, the induced current always flows in such a direction to oppose this relative motion
i.e., the approach or withdrawal of the magnet.

*  After the Russian born geologist and physicist Heinrich Friedrich Emil Lenz (1808 - 1865).
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7.6. Induced e.m.f.

Induced e.m.f. can be either (i) dynamically induced or (ii) stati-
cally induced. In the first case, usually the field is stationary and conduc-
tors cut across it (as in d.c. generators). But in the second case, usually the
conductors or the coil remains stationary and flux linked with it is changed
by simply increasing or decreasing the current producing this flux (as in
transformers).

7.7. Dynamically induced e.m.f. S orecon

Magnet

In Fig. 7.7. a conductor A is shown in cross-section, lying m” within a SR e )\ s
uniform magnetic field of flux density B Wb/m®. The arrow attached to A The principle of electric
shows its direction of motion. Consider the conditions shown in Fig. 7.7 generation
(a) when A cuts across at right angles to the flux. Suppose ‘I’ is its length lying within the field and let
it move a distance dx in time dt. Then area swept by it is = ldx. Hence, flux cut =l.dx x B webers.

Change in flux = Bldx weber
Time taken = dt second
Hence, according to Faraday’s Laws (Art. 7.3.) the e.m.f. induced in it (known as dynamically

induced e.m.f.) is
rate of change of flux linkages = Bcli(tjx BI g)t( = BIv volt where (cji)t( = velocity
If the conductor A moves at an angle 6 with the
direction of flux [Fig. 7.7 (b)] then the induced e.m.f.
is e =Blv sin 0 volts = [ux B (i.e. as cross product B
vector v and B). v
The direction of the induced e.m.f. is given by
Fleming’s Right-hand rule (Art. 7.5) or Flat-hand rule 9
and most easily by vector cross product given above.
It should be noted that generators work on they y y ¥ | YYYYVYVVY
production of dynamically induced e.m.f. in the con-
ductors housed in a revolving armature lying within (a) (b)
a strong magnetic field. Fig. 7.7

Example 7.4. A conductor of length 1 metre moves at right angles to a uniform magnetic field
of flux density 1.5 Wh/m? with a velocity of 50 metre/second. Calculate the e.m.f. induced init. Find
also the value of induced e.m.f. when the conductor moves at an angle of 30° to the direction of the
field.

Solution. Here B =15Wbm’ I=1m v=50m/s; e=?
Now e Blu=15x 1x50=75V.
In the second case ® = 30° .. sin30°=0.5 -.e=75x 05=375V

Example 7.5. A square coil of 10 cm side and with 100 turns is rotated at a uniform speed of
500 rpm about an axis at right angle to a uniform field of 0.5 Wb/m®. Calculate the instantaneous
value of induced e.m.f. when the plane of the coil is (i) at right angle to the plane of the field. (ii) in
the plane of the field. (iii) at 45° with the field direction.  (Elect. Engg. A.M.Ae. S.I. Dec. 1991)

Solution. As seen from Art. 12.2, e.m.f. induced in the coil would be zero when its plane is at right
angles to the plane of the field, even though it will have maximum flux linked with it. However, the coil
will have maximum e.m.f. induced in it when its plane lies parallel to the plane of the field even though
itwillhave minimum flux linked with it. In general, the value of theinduced e.m.f. is givenby e = wN®_
sin © = E sin © where 0 is the angle between the axis of zero e. m f. and the plane of the coil.

Here f=500/60=25/3rps;N=100;B= OSWb/m :A=(10x 10)x 10%=10"m”.

E,=2nfNBA=2m (25/3)x 100 x 0.5 x 107=26.2 V(I) since 6 =0 ; sin 0 =0 ; therefore,

e=0. (i) Here, 8 =90°; e =E, sin 90°=26.2 x 1 =262 V (iii) sin45°= 1/s/2 ;€=26.2x 142
=185V

Yy \ Yvyyvyy Yy

P <
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Example 7.6. A conducting rod AB (Fig. 7.8) makes contact with metal rails AD and BC which
are 50 cm apart in a uniform magnetic field of B= 1.0 Wh/m? perpendicular to the plane ABCD. The
total resistance (assumed constant) of the circuit ABCD is 0.4 Q

(a) What is the direction and magnitude of the e.m.f. induced in the rod when it is moved to the
left with a velocity of 8 m/s ?

(b) What force is required to keep the rod in motion ?

(c) Compare the rate at which mechanical work is done by the force F with the rate of develop-
ment of electric power in the circuit.

+ o+ A+ O+ o+ o+
Solution. (&) Since AB moves to the left, direction D
of the induced current, as found by applying Fleming’s T T T LA A A
Right-hand ryle is from A to B. Magnitude of the in- Soom + + P
duced e.m.f. is given by
e=Blv volt = 1x 0.5x 8=4volt l + + e
(b) Current through AB=4/0.4=10 A C
Forceon ABi.e. F=BIl=1x 10x 0.5=5N e B+ ¥ F
The direction of this force, as found by applying Fig. 7.8

Fleming’s left-hand rule, is to the right.

(c) Rate of doing mechanical work =Fx v=5x 8=40J/sor W

Electric power produced = ei=4x 10=40 W

From the above, it is obvious that the mechanical work done in moving the conductor against
force F is converted into electric energy.

Example 7.7 In a4-pole dynamo, the flux/pole is 15 mWh. Calculate the average e.m.f. induced
in one of the armature conductors, if armature is driven at 600 r.p.m.

Solution. It should be noted that each time the conductor passes under a pole (whether N or S)
it cuts a flux of 15 mWb. Hence, the flux cut in one revolution is 15 x 4 =60 mWb. Since conductor
is rotating at 600/60 = 10 r.p.s. time taken for one revolution is 1/10 = 0.1 second.

average e.m.f. generated = N dd_? volt
N=1; d® = 60 mWb=6x 10> Wb ; dt= 0.1 second

e = Ix6x10%0.1=06V

Tutorial Problems No. 7.1

1. A conductor of active length 30 cm carries a current of 100 A and lies at right angles to a magnetic
field of strength 0.4 Wb/m®. Calculate the force in newtons exerted on it. If the force causes the
conductor to move at a velocity of 10 m/s, calculate (a) the e.m.f. induced in it and (b) the power in
watts developed by it. [12 N; 1.2V, 120 W]

2. A straight horizontal wire carries a steady current of 150 A and is situated in a uniform magnetic field
of 0.6 Wb/m? acting vertically downwards. Determine the magnitude of the force in kg/metre length
of conductor and the direction in which it works. [9.175 kg/m horizontally]

3. A conductor, 10 cm in length, moves with a uniform velocity of 2 m/s at right angles to itself and to a
uniform magnetic field having a flux density of 1 Wb/m”. Calculate the induced e.m.f. between the
ends of the conductor. [0.2 V]

7.8. Statically Induced E.M.F.

It can be further sub-divided into (a) mutu-
ally induced e.m.f. and (b) self-induced e.m.f.

(a) Mutually-induced e.m.f. Consider two
coils A and B lying close to each other (Fig. 7.9).

Coil A is joined to a battery, a switch and a
variable resistance R whereas coil B is connected
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to a sensitive voltmeter V. When current through A
is established by closing the switch, its magnetic
field is set up which partly links with or threads
through the coil B. As current through A is changed,
the flux linked with B is also changed. Hence,
mutually induced e.m.f. is produced in B whose
magnitude is given by Faraday’s Laws (Art. 7.3) Fig. 7.10

and direction by Lenz’s Law (Art. 7.5).

If, now, battery is connected to B and the voltmeter across A (Fig. 7.10), then the situation is
reversed and now a change of current in B will produce mutually-induced e.m.f. in A.

It is obvious that in the examples considered above, there is no movement of any conductor, the
flux variations being brought about by variations in current strength only. Such ane.m.f. induced in
one coil by the influence of the other coil is called (statically but) mutually induced e.m.f.

(b) Self-induced e.m.f. This is the e.m.f. induced in a coil due to the change of its own flux
linked with it. If current through the coil (Fig. 7.11) is changed, then the flux linked with its own turns
will also change, which will produce in it what is called
self-induced e.m.f. The direction of this induced e.m.f. _
(as given by Lenz’s law) would be such as to oppose
any change of flux which is, in fact, the very cause of
its production. Hence, it is also known as the oppos- P
ing or counter e.m.f. of self-induction.

7.9. Self-inductance Fig. 7.11

Imagine a coil of wire similar to the one shown in Fig. 7.11 connected to a battery through a
rheostat. It is found that whenever an effort is made to increase current (and hence flux) through it, it
is always opposed by the instantaneous production of counter e.m.f. of self-induction. Energy required
to overcome this opposition is supplied by the battery. As will be fully explained later on, this energy
is stored in the additional flux produced.

If, now an effort is made to decrease the current (and hence the flux), then again it is delayed due
to the production of self-induced e.m.f., this time in the opposite direction. This property of the coil
due to which it opposes any increase or decrease or current of flux through it, is known as self-
inductance. It is quantitatively measured in terms of coefficient of self induction L. This property is
analogous to inertia in a material body. We know by experience that initially it is difficult to set a
heavy body into motion, but once in motion, it is equally difficult to stop it. Similarly, in a coil having
large self-induction, it is initially difficult to establish a current through it, but once established, it is
equally difficult to withdraw it. Hence, self-induction is sometimes analogously called electrical
inertia or electromagnetic inertia.

7.10. Coefficient of Self-induction (L)

It may be defined in any one of the three ways given below :
(i) First Method for L
The coefficient of self-induction of a coil is defined as
the weber-turns per ampere in the coil
By ‘weber-turns’ is meant the product of flux in webers and the number of turns with which the
flux is linked. In other words, it is the flux-linkages of the coil.
Consider a solenoid having N turns and carrying a current of | amperes. If the flux produced is

dwebers, the weber-turns are N®. Hence, weber-turns per ampere are N @/I.

By definition, L = NT(D . The unit of self-induction is henry*.

*  After the American scientist Joseph Henry (1797 - 1878), a company of Faraday.
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If in the above relation, N® = 1 Wb-turn, | = 1 ampere, then L = 1 henry (H)

Hence a coil is said to have a self-inductance of one henry if a current of 1 ampere when
flowing through it produced flux-linkages of 1 Wb-turn in it.
N @

|

Example 7.8. The field winding of a d.c. electromagnet is wound with 960 turns and has resis-
tance of 50 Qwhen the exciting voltages is 230 V, the magnetic flux linking the coil is 0.005 Wh.
Calculate the self-inductance of the coil and the energy stored in the magnetic field.

Therefore, the above relation becomes L = henry

Solution. Formulaused: L = NT(D H
Current through coil =230/50 =4.6 A ®=0.005 Wb ; N =960
L :_2-005 —1.0435 H. Energy stored = % L1%=1 %x 1.0435% 4.6> = 11.04 J

Second Method for L
We have seen in Art. 6.20 that flux produced in a solenoid is

NI P N P N
= — s—=———NowlL=N—-=N.———
/o, A I /g A | I/uou, A
N’ N’ AN
L I/ugu,A S or L_+

It gives the value of self-induction in terms of the dimensions of the solenoid™.

Example 7.9. Aniron ring 30 cm mean diameter is made of square of iron of 2 cm x 2 cm cross-
section and is uniformly wound with 400 turns of wire of 2 mm? cross-section. Calculate the value of
the self-inductance of the coil. Assume y, = 800. (Elect. Technology. I, Gwalior Univ.)

Solution. L = 1, AN/l Here N=400;A=2x 2=4cm’=4x 10" m*;1=03 wm; =800

: L = 4mx 107 x 800 x 4 x 107 (400)*/,, .= 68.3 mH

Note. The cross-section of the wire is not relevant to the given question.

Third Method for L

It will be seen from Art. 7.10 (i) above that L = NI_<I) oo NO®=Llor-NO=-L 1|

Differentiating both sides, we get — % (N@) = -L % (assuming L to be constant) ;

do dl
-N.—/— = L./
dt dt
do . dl
As seen from Art. 7.3, —N gt = self-induced e.m.f. g =L at
If % = 1 ampere/second and e, = 1 volt, thenL=1H

Hence, a coil has a self-inductance of one henry if one volt is induced in it when current
through it changes at the rate of one ampere/second.

Example 7.10. If a coil of 150 turns is linked with a flux of 0.01 Wb when carrying current of
10 A, calculate the inductance of the coil. If this current is uniformly reversed in 0.01 second,
calculating the induced electromotive force.

Solution. L = NdI=150% 0.01/10=0.15 H
Now, e, = Ldl/dt;dl=-10 —(-10) =20 A
: e, = 0.15x 20/0.01 =300V

* " In practice, the inductance of a short solenoid is given by L = Ky, p, AN/l where K is Nagaoka’s constant.
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Example 7.11. Aniron rod, 2 cm in diameter and 20 cm long is bent into a closed ring and is
wound with 3000 turns of wire. Iti is) found that when a current of 0.5 A is passed through this coil, the
flux density in the coil is 0.5 Wh/m?, Assuming that all the flux is linked with every turn of the coil,
what is (a) the B/H ratio for the iron (b) the inductance of the coil ? What voltage would be devel-
oped across the colil if the current through the coil is interrupted and the flux in the iron falls to 10 %

of its former value in 0.001 second ? (Principle of Elect. Engg. Jadavpur Univ.)
Solution. H = NI/I=3000 % 0.2 =7500 AT/m B = 0.5 Wb/m"
B_ 05 5 5 7
(a) Now, A~ 7500 =6.67x 10” H/m. Also u, =B/u, H=6.67 x 10°/4m x 10" =53
C N® _300xmx (0.02)° 0.5 _
®) L=""7 4x0.5 =094H

0.9%x % (0.02)> % 0.5
4
dt=0.001 second .. e =3000x 0.45w X 10%/0.001 = 424 v

Example 7.12. A circuit has 1000 turns enclosing a magnetic circuit 20 cm? in section. With
4 A, the flux density is 1.0 Wh/m? and with 9A, it is 1.4 Wbm?. Find the mean value of the inductance
between these current limits and the induced e.m.f. if the current falls from 9 Ato 4 Aiin 0.05 seconds.
(Elect. Engineering-1, Delhi Univ.)

=04571x 10* Wb

e, =N l\(lj—f[b volt ; dd= 90 % of original flux =

do
dl

Now, e =Ldl/dt;dlI=(9—-4)=5A,dt=0.05s .. e =0.16x 50.05=16V

Example 7.13. A direct current of one ampere is passed through a coil of 5000 turns and
produces a flux of 0.1mWhb. Assuming that whole of this flux threads all the turns, what is the
inductance of the coil ? What would be the voltage developed across the coil if the current were
interrupted in 10 second ? What would be the maximum voltage developed across the coil if a
capacitor of 10u F were connected across the switch breaking the d.c. supply ?

dl 0.5x1
Solution. L =Nd1=5000x 10*=05H ; Induced e.m.f.= L. g TN

Solution. L=N =~ —N—(BA)—NA ‘;B henry = 1000 x 20 x 10* (1.4 -1)/(9 -4) = 0.16 H

=500V

The energy stored in the coil is = % LI*= % X 05% 1°=0.25]

When the capacitor is connected, then the voltage developed would be equal to the p.d. devel-
oped across the capacitor plates due to the energy stored in the coil. IfV is the value of the voltage,

then%CVZ % le;% 10 10 °V? =025 or V = 224 volt

Example 7.14. (a) A coil of 1000 turns is wound on
atorroidal magnetic core having a reluctance of 10* AT/ Lenz's
Wh. When the coil current is 5 A and is increasing at the e
rate of 200 A/s, determine. g

(i) energy stored in the magnetic circuit (ii) volt- f
age applied across the coil

Assume coil resistance as zero.

(b) How are your answers affected if the coil resis-
tance is 2 Q

(Elect. Technology, Hyderabad Univ. 1991)
Solution. (a) L = N%S=1000710°=1H

1111
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Q) Energy stored = % LI* =%x1>< 5°=125

(if) Voltage applied across coil= self-induced e.m.f. in the coil = L.dl/dt =1 x 200 =200 V

(b) Though there would be additional energy loss of 5* x 2 = 50 W over the coil resistance,
energy stored in the coil would remain the same. However, voltage across the coil would increase by
an amount =5 X 2 =10 V i.e., now its value would be 210 V.

7.11. Mutual Inductance

In Art. 7.8 (Fig. 7.9) we have that any change of current in coil A is always accompanied by the
production of mutually-induced e.m.f. in coil B. Mutual inductance may, therefore, be defined as the
ability of one coil (or circuit) to produce an e.m.f. in a nearby coil by induction when the current in the
first coil changes. This action being reciprocal, the second coil can also induce an e.m.f. in the first
when current in the second coil changes. This ability of reciprocal induction is measured in terms of
the coefficient of mutual induction M.

Example 7.15. Asingle element has the current and voltage functions graphed in figure 7.12.

(a) and (b). Determine the element. [Bombay University 2001]
T (4, 10)
i T i T 10) |
anp | | 6 8
0 ! 1 T
2 4 ] 1 —
: : t (m sec)
=10 ©.10)
Fig. 7.12 (a)
tis—
1
T R
0 5 : : }
1 : t (m sec)
-30- L :
Fig. 7.12 (b)
Solution. Observations from the graph are tabulated below.
Sr. No. Between time di/dt V L
amp/sec

1 0-2m Sec 5000 15 15/5000 =3mH
2 2 -4 m Sec 0 0 —
3 4 -6 m Sec — 10,000 -30 —30/(-10,000)| =3 mH
4 6 - 8 m Sec 0 0 —

The element is a 3-mH inductor.

7.12. Coefficient of Mutual Inductance (M)

It can also be defined in three ways as given below :

(i) First Method for M

Let there be two magnetically-coupled coils having N, and N, turns respectively (Fig. 7.9).
Coefficient of mutual inductance between the two coils is defined as

the weber-turns in one coil due to one ampere current in the other.
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Let a current |, ampere when flowing in the first coil produce a flux & webers in it. It is
supposed that whole of this flux links with the turns of the second coil*. Then, flux-linkages i.e.,
webers-turns in the second coil for unit current in the first coil are N, ®/I,. Hence, by definition
N2 (Dl

Il

If weber-turns in second coil due to one ampere current in the first coil i.e. N, @/I, =1 then, as
seen from above, M = 1H.

Hence, two coils are said to have a mutual inductance of 1 henry is one ampere current when
flowing in one coil produces flux-linkages of one Wb-turn in the other.

Example 7.16. Two identical coils X and Y of 1,000 turns each lie in parallel planes such that
80% of flux produced by one coil links with the other. If a current of 5 A flowing in X produces a flux
of 0.5 mWh in it, find the mutual inductance between X and Y. (Elect. Engg. A,M.Ae.S.1.)

M =

N, D
Solution. Formulaused M = |2 L H ; Flux produced in X =0.5 mWb = 0.5 x 10° Wb
1

Flux linked with Y = 0.5 x 10° x 0.8=0.4x 10° Wb ; M = M =0.08 H
Example 7.17. A long single layer solenoid has an effective diameter of 10 cm and is wound
with 2500 AT/metre. There is a small concentrated coil having its plane lying in the centre cross-
sectional plane of the solenoid. Calculate the mutual inductance between the two coils in each case
if the concentrated coil has 120 turns on an effective diameter of (a) 8 cm and (b) 12 cm.
(Elect. Science - 11 Allahabad Univ. 1992)
Solution. The two cases (a) and (b) are shown in Fig. 7.13 (a) and (b) respectively.

(@) Let I, be the current flowing through the solenoid. Then

B = wH x uNI /I = 2500 y,l, Wb/m’ wl=1m
Area of search coil A = % x 82x 10* =161 x 10*m?

Flux linked with search coil is
(o}

BA, =2500 |, x 161 x 10*=15.79 1, x 10° Wb
N,®,  120x15.391,x10° .
M = - I =1.895x 107 H
1 1
(b) Since the field strength outside the solenoid is negligible, the effective area of the search
coil, in this case, equals the area of the long solenoid.

00000
0O 0 0 0O 0 0 o 0 o 0O 0O 0 0O o o o o o
T OOOOOT T
0.1 m 0.08 m 0.12m 0.1 m
l ooooo—L l
O O O O O O O O O O O O O O O O O O
00000
(a) (b)

Fig. 7.13

A, = %x 10% x 10“:%10%2;

*  If whole of this flux does not link with turns of the second coil, then only that part of the flux which is
actually linked is taken instead. (Ex. 7.13 and 7.17). In general, M = N ®/I .
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O]

BA, = 2500 pl, x 7 x 10°=24.68 1, x 10° Wb

120%24.681,x10°° 5
M = I =2.962x 10° H
Example 7.18. A flux of 0.5 mWhb is produced by a coil of 900 turns wound on a ring with a
current of 3 Ain it. Calculate (i) the inductance of the coil (ii) the e.m.f. induced in the coil when a
current of 5 A is switched off, assuming the current to fall to zero in 1 milli second and (iii) the mutual
inductance between the coils, if a second coil of 600 turns is uniformly wound over the first coil.

(F. E. Pune Univ.)

Nd _ 900x0.5x107

Solution. (i) Inductance of the first coil = | 3 =0.15H
. . di (-0
= L=--=0.15 =
(i) e.m.f. induced e, at ><1 <107 750 V
N,® 5x107
(i M2t o G00x05x0 oy

I 3
(if) Second Method for M
We will now deduce an expression for coefficient of mutual inductance in terms of the dimen-
sions of the two coils.
: : N, I, D, N,
Flux in the first coil @, = —=—— Wb; Flux/ampere= —=——+
ATRTIY Lo /uu A
Assuming that whole of this flux (it usually is some percentage of it) is linked with the other coil
having N, turns, the weber-turns in it due to the flux/ampere in the first coil is

v B NN R AN,
L A I
Also mo— Ny NN, Nl g

[/, A ~ reluctance S
Example 7.19. If a coil of 150 turns is linked with a flux of 0.01 Wb when carrying a current of

10 A ; calculate the inductance of the coil. If this current is uniformly reversed in 0.1 second,
calculate the induced e.m.f. If a second coil of 100 turns is uniformly wound over the first coil, find

the mutual inductance between the coils. (F. E. Pune Univ.)
Solution. L, = N,®/I,=150x 0.01/10=0.15H
e = Lx di/dt=0.15x [10 «(H0)]/0.1 =1=30V

M
(iiii) Third Method for M

N,d'l, =100 x 0.01/10=0.1H

N,
As seen from Art. 7.12 (i) M = |2 L N,® = MI, or —N,® =-MlI,
1
. L . d dl, )
Differentiating both sides, we get : ot (N, @) = -M ot (assuming M to be constant)
d . . , dl,
Now, —qt (N,®,) = mutually-induced e.m.f. in the second coil = ¢, ..e,=-M o

Ifdl,/dt=1A/s; ey =1volt,then M=1H.
Hence, two coils are said to have a mutual inductance of one henry if current changing at the
rate of 1 ampere/second in one coil induces an e.m.f. of one volt in the other.
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Example 7.20. Two coils having 30 and 600 turns respectively are wound side-by-side on a
closed iron circuit of area of cross-section 100 sq.cm. and mean length 200 cm. Estimate the mutual
inductance between the coils if the relative permeability of the iron is 2000. If a current of zero
ampere grows to 20 A in a time of 0.02 second in the first coil, find the e.m.f. induced in the second
coil. (Elect. Engg. I, INT Univ., Warangal)

) N;N, 4 2 2
Solution. Formulaused : M= ———=—H, N, =30;N,=600;A=100x 10" =10"m", | =2m
/gl A

M = AN N/l =41 x 107 x 2000 x 102 x 30 X 600/2 = 0.226 H
dl, =20-0=20A;dt=0.02s;e,=Mdl/dt=0226 x 20/0.2 =226 \/

Example 7.21. Two coils A and B each having 1200 turns are placed near each other. When
coil B is open-circuited and coil A carries a current of 5 A, the flux produced by coil A is 0.2 Wb and
30% of this flux links with all the turns of coil B. Determine the voltage induced in coil B on open-
circuit when the current in the coil A is changing at the rate of 2 A/s.

Solution. Coefficient of mutual induction between the two coils is M = N,®/I,
Flux linked with coil B is 30 per cent of 0.2 Wb i.e. 0.06 Wb

M = 1200 x 0.06/5=14.4H

Mutually-induced e.m.f. in coil B is &), = Mdl,/dt=14.4 x 2=28.8V

Example 7.22. Two coils are wound side by side on a paper-tube former. An e.m.f. of 0.25 V is
induced in coil A when the flux linking it changes at the rate of 10° Wh/s. A current of 2 A in coil B
causes a flux of 10° Wb to link coil A. What is the mutual inductance between the coils ?

(Elect. Engg-1, Bombay Univ.)

Solution. Induced e.m.f. in coil Aise =N CL—? where N, is the number of turns of coil A.

025—N><10 . N, =250
Now flux linkages in coil A due to 2 A current in c011 B=250x 10°
flux linkages in coil A

M = - -
current in coil B

=250 x 10°/2=1.25 mH

7.13. Coefficient of Coupling

Consider two magnetically-coupled coils A and B having N, and N, turns respectively. Their
individual coefficients of self-induction are,

N,* N,’
L, = m and L,= W
The flux @, produced in A due to a current |, ampere is O, = %
Suppose a fraction K, of this flux i.e. k,®, is linked with coil B.
Then M = kpll—XNZ where k| <1.
1

Substituting the value of @, we have, M =k, x L (i)

I/ 1ok A
Similarly, the flux ®, produced in B due to |, ampere in it is ®, = %

Suppose a fraction k, of this flux i.e. k,®, is linked with A.
kK, ®, x N, K NN,

Then M = =
l 21/, A

...(ii)
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Multiplying Eq. (i) and (ii), we get
, le sz
M” = kk X
P2 ol AT g, A
Putting \/k/k, =k, wehave M=k, /L, or k= EALZ
|
The constant K is called the coefficient of coupling and may be defined as the ratio of mutual
inductance actually present between the two coils to the maximum possible value. If the flux due
to one coil completely links with the other, then value of k is unity. If the flux of one coil does not at
all link with the other, then k= 0. In the first case, when k = 1, coils are said to be tightly coupled and
when k = 0, the coils are magnetically isolated from each other.

Example 7.23. Two identical 750 turn coils A and B lie in parallel planes. A current changing
at the rate of 1500 A/s in A induces an e.m.f. of 11.25 V in B. Calculate the mutual inductance of the
arrangement. If the self-inductance of each coil is 15 mH, calculate the flux produced in coil A per
ampere and the percentage of this flux which links the turns of B.

2
or M =KkkL,L,

Solution. Now, ey = Mdl/dt Art. 7.12
e 11.25 3
M= M _—"—==75x10"H=75mH
di,/dt 1500 7
N,®, o L B
Now, L, = —4— . - = o 13X ) o 10% wiia .Art. 7.10
I I N, 750
M 75 10° 75 10° )
Now, k= L e 5 107 ~05=50%(- L =L,=L) .Art.7.13

Example 7.24. Two coils, A of 12,500 turns and B of 16,000 turns, lie in parallel planes so that
60 % of flux produced in A links coil B. It is found that a current of 5A in A produces a flux of 0.6
mWhb while the same current in B produces 0.8 mWhb. Determine (i) mutual inductance and
(ii) coupling coefficient.
Solution. (i) Flux/ampere in A= 0.6/5=0.12 mWb
Flux linked with B = 0.12 x 0.6 =0.072 mWb

M = 0.072x 10° x 16,000 =1.15 H
12 . .
Now, LI:M — 150x 10°H ; L= 18000X08 50 107 H
(ii) k = M/\JLL, =1.15/ /1.5 x2.56 = 0.586

Note. We could find k in another way also. Value of k; = 0.6, that of k, could also be found, then k = /KK, .

Example 7.25. Two magnetically-coupled coils have a mutual inductance of 32 mH. What is
the average e.m.f. induced in one, if the current through the other changes from 3 to 15 mA in 0.004
second ? Given that one coil has twice the number of turns in the other, calculate the inductance of
each coil. Neglect leakage.

Solution. M=32x 10> H;dl, =15-3=12mA=12x 10> A ; dt = 0.004 second
dl,  32x107°x12x107°

. _ — _ 3
Average e.m.f. induced = s 0,004 96 x 10° V
Now L, = pN°A/l =k N where k = A/l (taking p, = 1)
CNYuA o Ly 2kN?
L 51 T C2 ke

2
1
Now M= JLL, =2, x L, =32,L, = 32/42 = 16/2mH ; L, =2 16/2 = 3242 mH
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Example 7.26. Two coils, A and B, have self inductances of 120 uH and 300 uH respectively. A
current of 1 A through coil A produces flux linkages of 100 uWhb turns in coil B. Calculate (i) the
mutual inductance between the coils (ii) the coupling coefficient and (iii) the average e.m.f. induced
in coil B if a current of 1 A in coil A is reversed at a uniform rate in 0.1 sec.

(F. E. Pune Univ.)

. . -6
Solution. (i) M = ﬂux-llnkag.es of.coﬂ B _ 100x10 " _ 100 pH
current in coil A 1

k= M 100x107°

VUL 120x10°x300x10°°
M x di/dt = (100 x 10®) x 2/0.1=0.002 V or 2mV.

(ii) M = kLL, = 0.527

(iii) e,
7.14. Inductances in Series e e,

(i) Letthe two coils be so joined in series that their fluxes
(or m.m.fs) are additive i.e., in the same direction (Fig. 7.14).

Let M = coefficient of mutual inductance
L, = coefficient of self-inductance of 1st coil
L, = coefficient of self-inductance of 2nd coil. 1 )
Then, self induced em.f. in Ais =e, =-L,. di
_ , dt , Fig. 7.14
Mutually-induced e.m.f. in A due to change of current in B
g di
ise’ =-M. at

Self-induced e.m.f. in B is = e, = —L,. %

Mutually-induced e.m.f. in B due to change of current in Ais =e,” =-M. %

(All have -ve sign, because both self and mutally induced e.m.fs. are in opposition to the applied

e.m.f.). Total induced e.m.f. in the combination = % (L, +L,+2M) ..()
If L is the equivalent inductance then total induced e.m.f. in that single coil would have been
_ o di .
= ot ..(i1)

Equating (i) and (ii) above, we have L=L, +L, +2M
(if) When the coils are so joined that their fluxes are in opposite directions (Fig. 7.15).

As before e, = —LI%
g = +M.% (mark this direction)
b i
e, = -det ande,” =+ M. at
Total induced e.m.f. = 3 (L, + L, ~2M)
Equivalent inductance
L =1L +L,-2M Fig. 7.15
In general, we have : L=L+L+2M ... if m.m.fs are additive

and L=1L+L,-2M ... if mm.fs. are subtractive
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Example 7.27. Two coils with a coefficient of coupling of 0.5 between them, are connected in
series so as to magnetise (a) in the same direction (b) in the opposite direction. The corresponding
values of total inductances are for (a) 1.9 H and for (b) 0.7 H. Find the self-inductances of the two
coils and the mutual inductance between them.

Solution. (a) L=L+L+2M or 19=L,+L,+2M (i)
(b) Here L=L+L,-2M or 07=L,+L,-2M (i)
Subtracting (ii) from (i), we get
1.2 = 4M s~ M=03H
Putting this value in (i) above, we get L, + L, =1.3 H ...(ii0)
We know that, in general, M = k,/LL,
_ M _03 _ . _
JLL, = *-05 =06 . LL,=036
From (iii), we get (L, + Lz) —4L,L, = (L, Lz)
(L, —L2) = 0 25 or L, -L,=05 ..(iv)

From (iii) and (iv), we get L, = 0.9 H and L,=04H

Example 7.28. The comblned inductance of two coils connected in series is 0.6 H or 0.1 H
depending on the relative directions of the currents in the coils. If one of the coils when isolated has
a self-inductance of 0.2 H, calculate (a) mutual inductance and (b) coupling coefficient.

(Elect. Technology, Univ. of Indore)

Solution. (i) L=L+L,+2M or 0.6=L,+L,+2M (i)

and 0.1 L, +L,-2M ..(i1)

(a) From (i) and (ii) we get, M = 0.125 H

Let L, = 0.2 H, then substituting this value in (i) above, we get L, = 0.15 H

(b) Coupling coefficient k = M,/LL, =0.125/,/0.2x0.15 =0.72

Example 7.29. Two similar coils have a coupling coefficient of 0.25. When they are connected
in series cumulatively, the total inductance is 80 mH. Calculate the self inductance of each coil.
Also calculate the total inductance when the coils are connected in series differentially.

(F. E. Pune Univ.)

Solution. If each coil has an inductance of L henry, then L, =L,= L; M=k/L,L, =k{/Lx L =kL

When connected in series comulatively, the total inductance of the coils is
=L +L,+2M = 2L +2M=2L +2kL=2L (1 +0.25) =2.5L
25L =80 or L=32mH
When connected in series differentially, the total inductance of the coils is
=L +L,-2M = 2L -2M =2L -2kL = 2L (1 —k) = 2L (1 —0.25)
2L><075 2% 32x 0.75=48 mH.
Example 7.30. Two coils with terminals T,, T, — —
and T,, T, respectively are placed side by side. When m
measured separately, the inductance of the first coil
is 1200 mH and that of the second is 800 mH. With T, " R
joined to T, the inductance between T, and T, is 2500 (@ ()
mH. What is the mutual inductance between the two Fig. 7.16
coils ? Also, determine the inductance between T, and T, when T, is joined to T,
(Electrical Circuit, Nagpur Univ. 1991)
Solution. L, = 1200 mH, L, =800 mH
Flg 7.16 (a) shows additive series.
o L=1L+L,+2M
or 2500 = 1200+800+2M ; M=250 mH
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Fig. 7.16 (b) shows the case of subtractive or opposing series.

Here, L =L, +L,-2M=1200 + 800 -2 x 250 = 1500 mH

Example 7.31. The total inductance of two coils, A and B, when connected in series, is 0.5 H or
0.2 H, depending on the relative directions of the current in the coils. Coil A, when isolated from coil
B, has a self-inductance of 0.2 H. Calculate

(a) the mutual inductance between the two coils

(b) the self-inductance of coil B

(c) the coupling factor between the coils.

(d) the two possible values of the induced e.m.f. in coil A when the current is decreasing at 1000
A per second in the series circuit. (Elect. Technology, Hyderabad Univ. 1992)

Solutlon (@) Combined inductance is given by L=1L, + L, £ 2M
05 =L, +L,+2M (|) 02=L,+L,2M ..(i)
Subtractmg (i) from (i), we have 4M 0 3 or M=0.075H
(b) Adding (i) and (ii) we have 0.7=2x 02+2L,=0.15H
(c) Coupling factor or coefficient is k = M/ /L, 0.075/,/0.2 0.15 =0.433 or 43.4%
di , \,di
() e = Lig =My
e, = (0.2+0.075)x 1000 =275V ...‘cumulative connection’
= (0.2 -0.075) x 1000 =125V ... differential connection’

Example 7.32. Find the equivalent in- 0.60 H
ductance L,g in Fig. 7.17 T ———
(Bombay University, 2001) i
Solution. Series Parallel combination A i B
of Inductors has to be dealt with. Note that L T ————
there is no mutual coupling between coils. 0.30 H
Lyg = 0.5+[0.6% 0.3/(0.3+0.3)]=0.7H Fig. 7.17
7.15. Inductance in Parallel L,
InFig. 7.18, two inductances of values L, and L, henry [ e
are connected in parallel. Let the coefficient of mutual _ . A ! I
inductance between the two be M. Let i be the main sup- i i,
ply current and i, and i, be the branch currents T
Obviously, i= i +i, b
d_i _ dil L diy dl2 (|) Fig. 7.18
dt dt  dt

In each coil, both self and mutually induced e.m.fs. are produced. Since the coils are in parallel,
these e.m.fs. are equal. For a case when self-induced e.m.f.,

we get ) ) ) ) ) ) ) )
di, di, di, L-M d# N
or H(Ll -M) = E(L2 -M) E: [Ll_ M | dt ...(II)
i L,—-M di,
Hence, (i) above becomes I+ dt = [( LM ]+1:|E (i)

If L is the equivalent inductance, then e = L. % = induced e.m.f. in the parallel combination
dI1 M di,

= induced e.m.f. in any one coil = L,. at ot
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di _1fy iy, di i
dt L(Li a M W)
i 2

dt

di 1 L2 -M di
Substituting the value of di/dt from (ii) in (iv), we get — = T L W +M W)

- : L-M _ 1 L, -M
Hence, equating (iii) to (iv), we have LM +1= 3 L L—M +M

L+L-2M 1 LL-M’

o L-M L L-M
LL,—M? .
L = ————— when mutual field assists the separate fields.
L +L,-2M
Similarl L = LMt hen the two field ach other
Y, L+L,+2M when the two fields oppose each other.

Example 7.33. Two coils of inductances 4 and 6 henry are connected in parallel. If their
mutual inductance is 3 henry, calculate the equivalent inductance of the combination if (i) mutual
inductance assists the self-inductance (ii) mutual inductance opposes the self-inductance.

LL,-M>  4x6-3 15

Solution. (i) L = = Y =3.75H

L+L,-2M 4+6-2x3
LL,-M?>  24-9 15

(i) L = L+L,+2M =6 " 16 =0.94 H (approx.)
Tutorial Problems No. 7.2
1. Two coils are wound close together on the same paxolin tube. Current is passed through the first coil

and is varied at a uniform rate of 500 mA per second, inducing an e.m.f. of 0.1 V in the second coil.
The second coil has 100 turns. Calculate the number of turns in the first coil if its inductance is 0.4 H.
[200 turns]
Two coils have 50 and 500 turns respectively are wound side by side on a closed iron circuit of section
50 cm” and mean length 120 cm. Estimate the mutual inductance between the coils if the permeability
of iron is 1000. Also, find the self-inductance of each coil. If the current in one coil grows steadily
from zero to 5A in 0.01 second, find the e.m.f. induced in the other coil.
[M=0131H,L,=0.0131H,L,=121H,E=654V]
An iron-cored choke is designed to have an inductance of 20 H when operating at a flux density of
1 Wb/mz, the corresponding relative permeability of iron core is 4000. Determine the number of turns
in the winding, given that the magnetic flux }%ath has a mean length of 22 cm in the iron core and of 1
mm in air-gap that its cross-section is 10 cm”. Neglect leakage and fringing. [4100]
A non-magnetic ring having a mean diameter of 30 cm and a cross-sectional area of 4 cm? is uni-
formly wound with two coils A and B, one over the other. A has 90 turns and B has 240 turns.
Calculate from first principles the mutual inductance between the coils.
Also, calculate the e.m.f. induced in B when a current of 6 A in A is reversed in 0.02 second.
[11.52 pH, 6.912 mV]
Two coils A and B, of 600 and 100 turns respectively are wound uniformly around a wooden ring
having a mean circumference of 30 cm. The cross-sectional area of the ring is 4 cm’. Calculate (a) the
mutual inductance of the coils and (b) the e.m.f. induced in coil B when a current of 2 A in coil A is
reversed in 0.01 second. [(a) 100.5 uH (b) 40.2 mV]
A coil consists of 1,000 turns of wire uniformly wound on a non-magnetic ring of mean diameter 40
cm and cross-sectional area 20 cm’.
Calculate (a) the inductance of the coil (b) the energy stored in the magnetic field when the coil is
carrying a current of 15 A (C) the e.m.f. induced in the coil if this current is completely interrupted in
0.01 second. [(@) 2mH (b) 0.225 joule (c) 3V]

. A coil of 50 turns having a mean diameter of 3 cm is placed co-axially at the centre of a solenoid 60

cm long, wound with 2,500 turns and carrying a current of 2 A. Determine mutual inductance of the
arrangement. [0.185 mH]

. A coil having a resistance of 2 Q and an inductance of 0.5 H has a current passed through it which
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11.

12.

13.

14.

15.

16.
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varies in the following manner ; () a uniform change from zero to 50 A in 1 second (b) constant at 50
A for 1 second (C) a uniform change from 50 A to zero in 2 seconds. Plot the current graph to a time
base. Tabulate the p.d. applied to the coil during each of the above periods and plot the graph of p.d.
to a time base. [(a) 25 to 125 V (b) 100 V (c) 87.5 V to -12.5 V]
A primary coil having an inductance of 100 puH is con-
nected in series with a secondary coil of 240 uH and the A
total inductance of the combination is measured as 146 pH.
Determine the coefficient of coupling.

Find the total inductance measured from A-B terminals, in
Fig. 7.19.[62.6%] (Circuit Theory, Jadavpur Univ.)

[Hint: L =100+ 50 -2 x 60) = 30 uH, due to opposite g
senses of currents with respect to dot-markings. ]

100 th

\60 uh —

50 puh

Fig. 7.19
Given that relative permeablility of cast iron as 200, that
of cast steel is 1200 and for Copper p, = 1. (Nagpur University, Summer 2003)
State Faraday's laws of electromagnetic induction. Distinguish between statically induced emf and
dynamically induced emf with examples.

(V.T.U., Belgaum Karnataka University, February 2002)
State : (i) Flemming's right hand rule, and (ii) Fleming's left hand rule.
Mention their applications. (V.T.U., Belgaum Karnataka University, Winter 2003)
Define : (i) Self inductance, and (ii) Mutual inductance.
Mention their units and formula to calculate each of them. Derive an expression for the energy stored
in an inductor of self inductance ‘L’ henry carrying the current of ‘I” amperes.

(V.T.U., Belgaum Karnataka University, Winter 2003)

State and explain Faraday's laws of electro magnetic induction, Lenz's Law. Fleming's right hand
rule and Fleming's left hand rule. (V.T.U., Belgaum Karnataka University, Summer 2003)
A coil of 300 turns wound on a core of non magnetic material has an inductance of 10mH. Calculate
(i) the flux produced by a current of 5A (ii) the average value of the emf induced when a current
of 5Amps is reversed in 8 mills seconds.(V.T.U., Belgaum Karnataka University, Summer 2003)

1.

2.

OBJECTIVE TESTS -7

According to Faraday’s Laws of Electromag-

netic Induction, an e.m.f. is induced in a con-

ductor whenever it

(a) lies in a magnetic field 4.
(b) cuts magnetic flux

(c) moves parallel to the direction of the

magnetic field

lies perpendicular to the magnetic flux.

(a) 3.2 pH
(c) 32.0 mH

(b) 3.2 mH

(d 32 H
(GATE 2004)

A moving iron ammeter produced a full scale

torque of 240 uNm with a deflection of 120°

at a current of 10 A. The rate of change of

self inductance (uH/radian) of the instrument

at full scale is

(a) 2.0 pH/radian

(b) 4.8 pH/radian

(d)

A pole of driving point admittance function

implies ' o (c) 12.0 pH/radian
(a) zero current for a finite value of driving (d) 114.6 pH/radian
voltage ‘ o (GATE 2004)
(b) zero voltage for a finite value of driving 5. The self-inductance of a long cylindrical
current

conductor due to its internal flux linkages is

(c) an open circuit condition

(d) None of (a), (b) and (c) mentioned in the
question (ESE 2001)

The inductance of a long solenoid of length

1000 mm wound uniformly with 3000 turns

on a cylindrical paper tube of 60 mm diameter

is

k H/m. If the diameter of the conductor is
doubled, then the selfinductance of the
conductor due its internal flux linkages would
be

(@) 0.5 K H/m
(c) 1.414 K H/m

(b) K H/m
(d) 4 K H/m
(GATE)
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8.1. Magnetic Hysteresis

It may be defined as the lagging of magnetisation or induction flux density (B) behind the
magnetising force (H). Alternatively, it may be defined as that quality of a magnetic substance, due to
which energy is dissipated in it, on the reversal of its magnetism.

Let us take an unmagnetised bar of iron AB and magnetise it by placing it within the field of a
solenoid (Fig. 8.1). The field H (= NI/l) produced by the solenoid is called the magnetising force.
The value of H can be increased or decreased by increasing or decreasing current through the coil.
Let H be increased in steps from zero up to a certain maximum value and the corresponding values of
flux density (B) be noted. If we plot the relation between H and B, a curve like OA, as shown in Fig.
8.2, is obtained. The material becomes magnetically saturated for H = OM and has at that time a
maximum flux density of B, established through it.

Fig. 8.1 Fig. 8.2

If H is now decreased gradually (by decreasing solenoid current), flux density B will not decrease
along AO, as might be expected, but will decrease less rapidly along AC. When H is zero, B is not but
has a definite value B, = OC. It means that on removing the magnetising force H, the iron bar is not
completely demagnetised. This value of B (= OC) measures the retentivity or remanence of the
material and is called the remanent or residual flux density B,.

To demagnetise the iron bar, we have to apply the magnetising force in the reverse direction.
When H is reversed (by reversing current through the solenoid), then B is reduced to zero at point D
where H = OD. This value of H required to wipe off residual magnetism is known as coercive force
(H,) and is a measure of the coercivity of the material i.e. its ‘tenacity’ with which it holds on to its
magnetism.

If, after the magnetisation has been reduced to zero, value of H is further increased in the ‘nega-
tive’ i.e. reversed direction, the iron bar again reaches a state of magnetic saturation, represented by
point L. By taking H back from its value corresponding to negative saturation, (= OL) to its value for
positive saturation (= OM), a similar curve EFGA is obtained. If we again start from G, the same
curve GACDEFG is obtained once again.*

* In fact, when H is varied a number of times between fixed positive and negative maxima, the size of the loop
becomes smaller and smaller till the material is cyclically magnetised. A material is said to be cyclically
magnetised when for each increasing (or decreasing) value of H, B has the same value in successive cycles.
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It is seen that B always lag behind H. The two never attain zero value simultaneously. This
lagging of B behind H is given the name “hystereis’ which literally means ‘to lag behind’. The closed
loop ACDEFGA which is obtained when iron bar is taken through one complete cycle of magnetisation
is known as ‘hypothesis loop’.

By one cycle of magnetisation of a magnetic material is meant its being carried through one
reversal of magnetisation, as shown in Fig. 8.3.

UNMAG- UNMAG- UNMAG-
NETISED S N NETISED N S NETISED S N
L ==l 1E==L_][E==
L— ONE CYCLE >!

Fig. 8.3

8.2. Area of Hysteresis Loop

Just as the area of an indicator diagram measures the energy made available in a machine, when
taken through one cycle of operation, so also the area of the hysteresis loop represents the net energy
spent in taking the iron bar through one cycle of magnetisation.

According to Weber’s Molecular Theory of magnetism, when a magnetic material is magnetised,
its molecules are forced along a straight line. So, energy is spent in this process. Now, if iron has no
retentivity, then energy spent in straightening the molecules could be recovered by reducing H to
zero in the same way as the energy stored up in a spring can be recovered by allowing the spring to
release its energy by driving some kind of load. Hence, in the case of magnetisation of a material of
high retentivity, all the energy put into it originally for straightening the molecules is not recovered
when H is reduced to zero. We will now proceed to find this loss of energy per cycle of magnetisation.

Let |1=mean length of the iron bar ; A = its area of cross-section; N = No. of turns of wire of the
solenoid.

If B is the flux density at any instant, then ®= BA.

When current through the solenoid changes, then flux also changes and so produces an induced
e.m.f. whose value is

e = NI®yo=nd (BA) = NA 9B yolt (neglecting -ve sign)
dt dt dt
Now H = ¥ or I= HWI
The power or rate of expenditure of energy in maintaining the current ‘I’ against induced e.m.f.
cnr HI dB dB
e’lis = elwatt= — —= — watt
N NA e AlH p
dB

Energy spentintime ~ ‘d’ = AlLH =xdt = ALH.dB joule

Total net work done for one cycle of magnetisation isW = Al H dB joule

where § stands for integration over the whole cycle. Now, ‘H dB’ represents the shaded area in
Fig. 8.2. Hence, §HdB = area of the loop i.e. the area between the B/H curve and the B-axis
work done/cycle = A, x (area of the loop) joule. Now Al = volume of the material
net work done/cycle/m3 = (loop area) joule, or W, = (Area of B/H loop) joule m3/cycle
Precaution
Scale of B and H should be taken into consideration while calculating the actual loop area.

For example, if the scales are, 1 cm =x AT/m —forHand 1lcm= be/m2 —for B
then W, = xy (area of B/H loop) joule/mslcycle
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In the above expression, loop area has to be in cm?.
As seen from above, hysteresis loop measures the energy dissipated due to hysteresis which
appears in the form of heat and so raises the
temperature of that portion of the magnetic cir-
cuit which is subjected to magnetic reversal. Magnetiy,

The shape of the hysteresis loop depends on  zation M M
the nature of the magnetic material (Fig. 8.4). ""7:—""“.7 """"" ~ 7
Loop 1 is for hard steel. Due to its high / [ [y i
retentivity and collectivity, it is well suited for f | Bo || ] Bo [ Bo
making permanent magnets. But due to large / | Aootiec S /1
hysteresis loss (as shown by large loop area) it~/ J Fon A //
is not suitable for rapid reversals of magne- £ — == .. = g il
tisation. Certain alloys of aluminium, nickel
and steel called Alnico alloys have been found
extremely suitable for making permanent mag-
nets.
Loop 2 is for wrought iron and cast steel. Fig. 8.4

It shows that these materials have high perme-
ability and fairly good coercivity, hence making them suitable for cores of electromagnets.

Loop 3 is for alloyed sheet steel and it shows high permeability and low hysteresis loss. Hence,
such materials are most suited for making armature and transformer cores which are subjected to

rapid reversals of magnetisation.

8.3. Properties and Applications of Ferromagnetic Materials

Ferromagnetic materials having low retentivities are widely used in power and communication
apparatus. Since silicon iron has high permeability and saturation flux density, it is extensively used

400 000 volts
/

|« core —— [~

R core

Armature

in the magnetic circuits of electrical machines and heavy current apparatus where a high flux density
is desirable in order to limit the cross-sectional area and, therefore, the weight and cost. Thin silicon-
iron laminations (clamped together but insulated from each other by varnish, paper or their own
surface scale) are used in the construction of transformer and armature cores where it is essential to
minimize hysteresis and eddy-current losses.

In field systems (where flux remains constant), a little residual magnetism is desirable. For such
systems, high permeability and high saturation flux density are the only important requirements which
are adequately met by fabricated rolled steel or cast or forged steel.

Frequencies used in line communication extend up to 10 MHz whereas those used in radio vary
from about 100 kHz to 10 GHz. Hence, such material which have high permeability and low losses
are very desirable. For these applications, nickel-iron alloys containing up to 80 per cent of nickel
and a small percentage of molybdenum or copper, cold rolled and annealed are very suitable.

8.4. Permanent Magnet Materials
Permanent magnets find wide application in electrical measuring instruments, magnetos, mag-
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netic chucks and moving-coil loudspeakers etc. In permanent magnets, high retentivity as well as
high coercivity are most desirable in order to resist demagnetisation. In fact, the product B H_ is the
best criterion for the merit of a permanent magnet. The material commonly used for such purposes
are carbon-free iron-nickel-aluminium copper-cobalt alloys which are made anisotropic by heating to
avery high temperature and then cooling in a strong magnetic field. This alloy possesses B, H, value
of about 40,000 J/m* as compared with 2,500 J/m® for chromium-steel.

Example 8.1. The hystereS|s loop of a sample of sheet steel subjected to @ maximum flux density
of 1.3 Wb/m? has an area of 93 cm?, the scales belng 1cm = 0.1 Wb/m? and 1 cm = 50 AT/m. Calcu-
late the hysteresis loss i in watts When 1500 cm® of the same material is subjected to an alternating
flux density of 1.3 Wh/m? peak value of a frequency of 65 Hz.

(Electromechanics, Allahabad Univ, 1992)

Solution. Loss = xy (area of B/H loop) J/m3/cycle
= 0.1x 50>< 93 =465 J/m /cycle
\olume = 1500 cm® —15>< 10* m* ; No. of reversals/second = 65
W, = 465x 15x 10%x 65 /s = 453 W

Note. The given value of B, = 1.3 Wh/m? is not required for solution.

Example 8.2. Calculate the hourly loss of energy in kWh in a specimen of iron, the hysteresis
loop of which is equivalent in area to 250 Jim®. Frequency 50 Hz ; specific gravity of iron 7.5 ;
weight of specimen 10 kg. (Electrical Engg. Materials, Nagpur Univ. 1991)

Solution. Hysteresis loss = 250 J/m /cycle Mass of i iron = 10 kg
\Volume of iron specimen 10/7.5% 10° m* = 10%7.5 m?
No. of cycles of reversals/hr 60 x 50 = 3000
loss/hour = 250 x (10 /7.5) x 3000 = 1000 J = 1000/36 x 10° = 27.8 x 10° KWh

Example 8.3. The hysteresis loop for a certaln magnetic material is drawn to the following
scales : 1 cm =200 AT/mand 1 cm = 0.1 Wb/m The area of the loop is 48 cm?. Assuming the
density of the material to be 7.8 x 10° kg/m calculate the hysteresis loss in watt/kg at 50 Hz.

(Elect. Circuits & Fields, Gujarat Univ.)

Solution. Hysteresis loss = xy (area of B/H loop) J/m /cycle
Now, l1cm = 200 AT/m ;1 cm = 0.1 Wh/m?
: x = 200,y= 01 area of Ioop 48 cm?
. loss = 200x 0.1x 48=960J/m° /cycles Density =7.8 x 10 kg/m
Volume of 1 kg of material = mass/density = 1/7 8x 10°m®
: loss = 960 x 1/7.8 x 10 Jicycle No. of reversals/second = 50
loss = 960 x 50 x 10°/7.8 = 6.15 J/s or watt

hysteresisloss = 6.15 watt/kg.

Example 8.4. Determine the hysteresis loss in an iron core weighing 50 kg having a density of
7.8 x 10 kg/m3 when the area of the hysteresis loop is 150 cm?, frequency is 50 Hz and scales on X
and Y axes are : 1 cm = 30 AT/cm and 1 cm = 0.2 Wh/m® respectively.

(Elements of Elect. Engg-1, Bangalore Univ.)

Solution. Hysteresis loss = xy (area of B/H loop) J/m3/cycle
lcm = 30AT/cm =3000 AT/m; 1 cm = 0.2 Wb/m?
x = 3000, y=0.2, A= 150cm
loss = 3000x 0.2x 150 = 90 000 J/m /cycle
Volume of 50 kg of iron = m/p =50/7.8 x 10 =6.4x 10°m°
loss = 90,000 x 6.4 x 107 x 50 = 28,800 J/s or watts = 28.8 kW

Example 8.5. In a transformer core of volume 0.16 m?®, the total iron loss was found to be 2,170
W at 50 Hz. The hysteresis loop of the core material, taken to the same maximum flux density, had an
area of 9.0 cm” when drawn to scales of 1 cm = 0.1 Wh/m? and 1 cm = 250 AT/m. Calculate the total
iron loss in the transformer core if it is energised to the same maximum flux density but at a frequency
of 60 Hz.
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Solution. W,
W

Xy x (area of hysteresis loop) where x and y are the scale factors.
9% 0.1x 250 = 225 J/m*/cycle

At 50 Hz
Hysteresis loss = 225 x 0.16 x 50 = 1,800 W ; Eddy-current loss = 2,170 —1800 = 370 W
At 60 Hz
Hysteresis loss = 1800 x 60/50 = 2,160 W ; Eddy-current loss = 370 x (60/50)2 =533 W
Total iron loss = 2,160 + 533 = 2,693 W

Tutorial Problems No. 8.1

1. The area of a hysteresis loop of a material is 30 cm?. The scales of the co-ordinates are : 1 cm = 0.4
Wh/m? and 1 cm = 400 AT/m. Determine the hysteresis power loss if 1.2 x 10° m® of the material is
subjected to alternating flux density at 50 Hz. [288 W] (Elect. Engg., Aligarh Univ)

2.  Calculate the loss of energy caused by hysteresis in one hour in 50 kg of iron when subjected to cyclic
magnetic changes. The frequency is 25 Hz, the area of the hysteresis loop represents 240 joules/m3
and the density of iron is 7800 kg/m3. [138,240] (Principles of Elect. Engg. I, Jadvapur Univ.)

3. The hysteresis loop of a specimen weighing 12 kg is eguivalent to 300 joules/m3. Find the loss of
energy per hour at 50 Hz. Density of iron is 7500 kg/m".

[86,400] (Electrotechnics — I, Gawahati Univ.)

4. The area of the hysteresis loop for a steel specimen is 3.84 cm?. If the ordinates are to the scales : 1 cm
=400 AT/mand 1cm=0.5 Wb/mz, determine the power loss due to hysteresis in 1,200 cm?® of the
steel if it is magnetised from a supply having a frequency of 50 Hz. [46.08 W]

5. The armature of a 4-pole d.c. motor has a volume of 0.012 m°. In a test on the steel iron used in the
armature carried out to the same value of maximum flux density as exists in the armature, the area of
the hysteresis loop obtained represented a loss of 200 J/m3. Determine the hysteresis loss in watts
when the armature rotates at a speed of 900 r.p.m. [72 W]

6. Inamagnetisation test on a sample of iron, the following values were obtained.

H (AT/m) 1,900 2,000 3,000 4,000 4500 3,000 1,000 0 -1,000 -1,900

B (Wh/m?) 0 0.2 0.58 0.7 0.73 0.72 0.63 0.54 0.38 0
Draw the hysteresis loop and find the loss in watts if the volume of iron is 0.1 m® and frequency is
50 Hz. [22 kW]

8.5. Steinmetz Hysteresis Law

It was experimentally found by Steinmetz that hysteresis loss per m? per cycle of magnetisation
of a magnetic meterial depends on (i) the maximum flux density established initi.e. B, and (ii) the
magnetic quality of the material.

6 1.6

Hysteresis loss W, o BL>  joule/m®/cycle =7 BLo joule/m® cycle

where nis a constant depending on the nature of the magnetic material and is known as Steinmetz
hysteresis coefficient. The index 1.6 is empirical and holds good if the value of B lies between 0.1

and 1.2 Wh/m’. If B ax IS €ither lesser than 0.1 Whb/m® or greater than 1.2 Wbm?, the index is greater
than 1.6.

. max

where f is frequency of reversals of magnetisation and V is the volume of the magnetic material.

The armatures of electric motors and generators and transformer cores etc. which are subjected
to rapid reversals of magnetisation should, obviously, be made of substances having low hysteresis
coefficient in order to reduce the hysteresis loss.

Example 8.6. A cylinder of iron of volume 8 x 10 m® revolves for 20 minutes at a speed of
3,000 r.p.m in a two-pole field of flux density 0.8 Wb.m?. If the hysteresis coefficient of iron is 753.6
joule/m®, specific heat of iron is 0.11, the loss due to eddy current is equal to that due to hysteresis
and 25% of the heat produced is lost by radiation, find the temperature rise of iron. Take density of
iron as 7.8 x 10° kg/ms. (Elect. Engineering-I, Osmania Univ.)

W, = an fv J/s or watt
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Solution. An armature revolving in a multipolar field undergoes one magnetic reversal after
passing under a pair of poles. In other words, number of magnetic reversals in the same as the number
of pair of poles. If P is the number of poles, the magnetic reversals in one revolution are
P/2. If speed of armature rotation is N r.p.m, then number of revolutions/second = N/60.

No. of reversals/second = reversals in one revolutions x No. of revolutions/second

P_N _PN
E>< 60~ 120 reversals/second
Here N =3000rpm;P=2 .f =%=SO reversals/second

According to Steinmetz’s hysteresis law, W, _n816 f V watt

Note that f here stands for magnetic reversals/second and not for mechanical frequency armature
rotation.

W, = 753.6 x (0.8)"° x50 x 8 x 107° = 211 J/s

Loss in 20 minutes = 211 x 1,200 = 253.2 x 10°J

Eddy current loss = 253.2 x 10% J; Total loss = 506.4 x 10°J

Heat produced = 506.4 x 10%/4200 = 120.57 kcal ; Heat utilized = 120.57 x 0.75 = 90.43 kcal

Heat absorbed by iron = (8 x 107 x 7.8 x 103) x 0.11 t kcal

(8x10°x7.8x10% x 0.11 xt=90.43 .. t=13.17°C

Example 8.7. The area of the hysteresis loop obtalned with a certain speC|men of iron was
9.3 cm®. The coordinates Were such that 1 cm = 1,000 AT/m and 1 cm = 0.2 Wb/m®. Calculate
(2) the hysteresis loss per m® per cycle and (b) the hysteresis loss per m® at a frequency of 50 Hz if the

maximum flux densny were 1.5 Wh/m? (c) calculate the hysteresis loss per m® for a maX|mum flux
density of 1.2 Whb/m? and a frequency of 30 Hz, assuming the loss to be proportional to B

(Elect. Technology, Allahabad Umv 1991)
Solution.(a) W, =xy x (area of B/H loop)
= 1,000 x 0.2 x 9.3 = 1860 J/m*/cycle
(b) W, = 1,860 x 50 J/s/m* = 93,000 W/m’

© W, = max f VW For agiven specimen, W, ﬁqu f
In (b) above, 93,000 o 1.5 x 50 and W, ol 248 x 30
Wo _ (12 30. \w — _
93000 - [Ej XTo W, =93,000 % 0.669x 0.6 =37.360

Example 8.8. Calculate the Ioss of energy caused by hysteresis in one hour in 50 kg of iron if the
peak densny reached is 1.3 Wb/m? and the frequency is 25 Hz. Assume Steinmetz coefficient as
628 J/m® and density of iron as 7.8 x 10° kg/m

What will be the area of B/H curve of this specimen if 1.cm =12.4AT/mand1cm=0.1 Wh/m?,

(Elect. Engg. ; Madras Univ.)
N _641x10°m?
7.8x10
: W, = 628x1.3"°x25x6.41x10°=152J/s
Loss in one hour = 153 x 3,600 = 551,300 J
As per Steinmetz law, hysteresis loss = anaX Jim®/cycle
Also, hysteresis loss = xy (area of B/H loop)
Equating the two, we get
628 x 1.3'°
loop area

Solution. W, nBLS fV watt ; volumeV =

12.5x 0.1 x loop area
628 x 1.3%/1.25 = 764.3 cm*
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Tutorial Problems No. 8.2

1. In a certain transformer, the hysteresis loss is 300 W when the maximum flux density is 0.9 Wh/m?
and the frequency 50 Hz. What would be the hysteresis loss if the maximum flux density were
increased to 1.1 Wh/m? and the frequency reduced to 40 Hz. Assume the hysteresis loss over this
range to be proportional to B#Zx [337 W]

2. Inatransformer, the hysteresis loss is 160 W when the value of B, = 1.1 Wh/m? and when supply
frequency is 60 Hz. What would be the loss when the value of B is reduced to 0.9 Wb/m” and the
supply frequency is reduced to 50 Hz. [97 W] (Elect. Engg. I, Bangalore Univ.)

8.6. Energy Stored in a Magnetic Field

For establishing a magnetic field, energy must be spent, though no energy is required to maintain
it. Take the example of the exciting coils of an electromagnet. The energy supplied to it is spent in
two ways (i) part of it goes to meet IR loss and is lost once for all (ii) part of it goes to create flux and
is stored in the magnetic field as potential energy and is similar to the potential energy of a raised
weight. When a weight W is raised through a height of h, the potential energy stored in itis W,. Work
is done in raising this weight but once raised to a certain height, no further expenditure of energy is
required to maintain it at that position. This mechanical potential energy can be recovered, so can be
the electrical energy stored in the magnetic field.

When current through an inductive coil is gradually changed from zero to maximum value I, then
every change of it is opposed by the self-induced e.m.f. produced due to this change. Energy is
needed to overcome this opposition. This energy is stored in the magnetic field of the coil and is, later
on, recovered when that field collapses. The value of this stored energy may be found in the follow-
ing two ways :

(i) First Method. Let, at any instant,

i = instantaneous value of current ; e = induced e.m.f. at that instant = L.di/dt

Then, work done in time dt in overcoming this opposition is
dw = eidt= L.%xixdt:Li di
Total work done in establishing the maximum steady current of I is

W 1
j aw = j Lidi=L12 or W=2112
0 0 2
This work is stored as the energy of the magnetic field .~.E :% L1? joules
(i) Second Method
If current grows uniformly from zero value to its maximum steady value I, then average current
is I/2. If L is the inductance of the circuit, then self-idcued e.m.f. is e = LI/t where ‘t’ is the time for

the current change from zero to I.
Average power absorbed

induced e.m.f. x average current

1.1, _1L1?
= L— - == —
72 T2t
1L 1
Total energy absorbed = power x time = ETXtZELI
energy stored E = %lejoule

It may be noted that in the case of series-aiding coils, energy stored is

E = %(L1+L2+2M)I2=%L1I2+%LzI2+M 12

Similarly, for series-opposing coils, E =% L 12 +% L, 12-M 12
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Example 8.9. Reluctance of a magnetic circuit is known to be 10° AT/Whb and excitation coil
has 200 turns. Current in the coil is changing uniformly at 200 A/s. Calculate (a) inductance of the
coil (b) voltage induced across the coil and (c) energy stored in the coil when instantaneous current
att=1secondis 1 A. Neglect resistance of the coil. (Elect. Technology, Univ. of Indore, 1987)

Solution. (a) L = N%S=200%10°=0.4 H

(b) e Ldl/dt=0.4x200=80V

© E= %LI2:0.5x0.4xI2=0.2J

Example 8.10. An iron ring of 20 cm mean diameter having a cross-section of 100 cm? is
wound with 400 turns of wire. Calculate the exciting current required to establish a flux density of
1 Wh/m? if the relative permeability of iron is 1000. What is the value of energy stored ?

(Elect. Engg-1, Nagpur Univ. 1992)

Solution. B = u, 1 NI/l Wh/m?

- 1 = 4mx 107" x 1000 x 400 1/0.2% or 1=1.25 A

Now, L = yo iy ANY/I =4 x 107 x 10° x (100 x 10°%) x (400)/0.2 = 32.H
E = % L12 =%><3.2><1.252 =257

8.7. Rate of Change of Stored Energy

As seen fromArt. 8.6, E :% L 12, Therate of change of energy can be found by differentiating
the above equation

EN. i[L.z.l.d—'+|”'—'-}=L|.“” S

dat C 2 dt dt dt 2 dt

Example 8.11. A relay (Fig. 8.5) has a coil of 1000 turns and an air-gap of area 10 cm? and
length 1.0 mm. Calculate the rate of change of stored energy in the air-gap of the relay when

(i) armature is stationary at 1.0 mm from the core and current is 10 mA but is increasing at the
rate of 25 Als.

(i) current is constant at 20 mA but inductance is changing at the rate of 100 H/s.

2
. Ho N7A
Solution. L = ——— l
olution | L
-7 3,2 -4 I
_4nx10 x (10 )73><10><10 —196H i : E_m\_ﬂ
1x10 ? N=1000 i :

111

(i) Here, dl/dt =25 A/s, dL/dt = 0 because armature is o——J
stationary. L2

9E 19 1 26%10x10 ¥ x15=0.315 W Fig. 8.5

dt dt
(ii) Here, dL/dt = 100 H/s; dI/dt = 0 because current is constant.

dE 1 