

TE 364 LECTURE 8: Introduction to Oscillator Design

2016.03.04

Abdul-Rahman Ahmed

Introduction

Oscillator circuits;

are used for generating the periodic signals
convert a part of dc power into periodic output and do not require a periodic signal as input.

Feedback and Basic Concepts

Solid-state oscillators use a diode or a transistor

- in conjunction with the passive circuit to produce sinusoidal steadystate signals.
- Transients or electrical noise triggers oscillations initially.
 - The process requires a nonlinear active device.
 - *a negative resistance is necessary to sustain oscillation of RF signal in reactance oscillators.

Principle of an Oscillator Circuit

The basic principle of an oscillator circuit can be explained via a linear feedback system

Assume that a part of output Y is fed back to the system along with an input signal X

_.

 \Box Transfer function of the forward-connected subsystem is A

 \Box Feedback path has a subsystem with its transfer function as β . \Box Therefore,

$$Y = A(X + \beta Y)$$

The closed-loop gain T (generally called the *transfer function*) of this system is found from this equation as

$$T = \frac{Y}{X} = \frac{A}{1 - A\beta}$$

Basic Concepts...

Product $A\beta$ is known as the *loop gain*.

- It is a product of the transfer functions of individual units in the loop
- Numerator A is called the *forward path gain*It represents the gain of a signal traveling from input to output
 For a loop gain of unity, T becomes infinite.
 the circuit has an output signal Y without an input signal X and the system oscillates.
- The condition $A\beta = 1$ is known as the *Barkhausen criterion*

Basic Concepts...

If the signal $A\beta$ is subtracted from X before it is fed to A, the denominator of T changes to;

In this case, the system oscillates for $A\beta = -1$

 $(1 + A\beta)$

This is known as the *Nyquist criterion*.

Since the output of an amplifier is generally 180° out of phase with its input, it may be a more appropriate description for that case.

Generalized Oscillator Circuit

Schematic of oscillator circuit **\odot** Device *T* in this circuit may be a bipolar transistor or a FET. If it is a BJT, terminals 1, 2, and 4 represent the base, emitter, and collector, respectively. Y_3 On the other hand, these may be the gate, source, and drain terminals if it is a FET

Hartley Oscillator

Resonant frequency is obtained via

Note that this relation assumes that there is no mutual coupling between L₁ and L₂.
If the coupling factor is k, the correction term is 2k(L₁ L₂)^{0.5} that should be added to L₁+L₂

Colpitt's Oscillators

The resonant frequency of a Colpitt's oscillator is as follows:

Biased BJT Colpitts Oscillator Circuit

Crystal Oscillators

Quartz and ceramic crystals are used in oscillator circuits for additional stability of frequency. \Box They provide a fairly high Q value L_{c} (on the order of 100,000) that shows a small drift with temperature C_P C_{S} (on the order of 0.001% per °C) The crystal exhibits both series and R_{S} parallel resonant modes

Crystal Oscillators...

Series resonant frequency ω_S and parallel resonant frequency ω_P of the crystal can be found from its equivalent circuit.

These are as follows:

$$\omega_S = \frac{1}{\sqrt{L_S C_S}} \qquad \omega_P = \omega_S$$

$$\omega_P = \omega_S \sqrt{1 + \frac{C_S}{C_P}}$$

Hence, the frequency range $\Delta \omega$ over which the crystal behave s as an inductor can be determined as follows:

$$\omega_P - \omega_S = \Delta \omega = \omega_S \left[\sqrt{\left(1 + \frac{C_S}{C_P}\right)} - 1 \right] \approx \frac{C_S}{2C_P} \omega_S$$

Crystal Oscillators...

- $\Box \Delta \omega$ is known as the *pulling figure* of the crystal.
- Typically, ω_P is less than 1% higher than ω_S .
- Given For an oscillator design, a crystal is selected such that the frequency of oscillation falls between ω_S and ω_P .
 - Therefore, the crystal operates basically as an inductor in the oscillator circuit

Pierce Oscillator

A BJT oscillator circuit using crystal as the resonant circuit.

Pierce Oscillator

- A BJT oscillator circuit using crystal as the resonant circuit.
 - The crystal provides very stable frequency of oscillation over a wide range of temperature.
 - The main drawback of a crystal oscillator circuit is that its tuning range is relatively small.
 - *It is achieved by adding a capacitor in parallel with the crystal.
 - Solution In this way, the parallel resonant frequency $ω_P$ can be decreased up to the series resonant frequency $ω_S$

The capacitance of the tuned circuit can be varied to change the frequency of oscillation

□ It can be done electronically by using a varactor diode and controlling its bias voltage. Two main type of veractor diode:

*Abrupt and

hyperabrupt junctions

• Abrupt junction diodes provide very high Q values and also operate over a very wide tuning voltage range (typically, 0 to 60 V). These diodes provide an excellent phase noise performance because of their high Q value

Electronic Tuning of Oscillators...

UPperabrupt-type diodes exhibit a quadratic characteristic of the capacitance with applied voltage.

- Therefore, these varactors provide a much more linear tuning characteristic than does the abrupt type.
- These diodes are preferred for tuning over a wide frequency band.
 An octave tuning range can be covered in less than 20 V.
- The main disadvantage of these diodes is that they have a much lower Q value, and therefore the phase noise is higher than that obtained from the abrupt junction diodes.

Electronic Tuning of Oscillators...

The capacitance of a varactor diode is related to its bias voltage as follows:

$$C = \frac{A}{(V_R + V_B)^n} \longrightarrow C = A/V^n$$

A is a constant,

- V_R the applied reverse bias voltage, and
- V_B the built-in potential

n is a number between 0.3 and 0.6 for a hyperabrupt junction

Electronic Tuning of Oscillators...

The resonant circuit of a typical voltage-controlled oscillator (VCO) has a parallel tuned circuit consisting of

- inductor L,
- fixed capacitor Cf, and

 \bullet The varactor diode with capacitance C

Its frequency of oscillation can be written as

$$\omega = \frac{1}{\sqrt{L(C_f + C)}} = \frac{1}{\sqrt{L\left(C_f + \frac{A}{V^n}\right)}}$$

