

TE 364: Communication Circuits Lecture 4

Radio Receivers & Characterization

2015.01.05

Abdul-Rahman Ahmed

Outline EXPLEM Exploring KNUST Exploring Exploring Exploring Exploring Exploring Exploring

Radio Recivers

- Superheterodyne Receivers Analog Digital Receiver Characterization
	- **Receiver Noise**
	- **Receiver Sensitivity**
	- System Non-linearity
	- **Receiver Dynamic Range**

Receiver Selectivity

Fig. 1 The Superheterodyne receiver

KNUST Telecomm. Engineering

The antenna: functions as described earlier

LIRF Preselector

Filter out all unwanted frequencies outside RF band

Eliminate spurious response

ORF Amplifier

linearly amplify input signal & minimize added noise

•• Low noise amplifiers are typically used for this purpose

- **The Interstage selector**
	- suppresses gain of any undesired signal responses at spurious frequencies
		- and at image frequencies in particular
	- Thus maintaining system noise figure
- **The Local Oscillator (LO)**
	- \cdot Tuned across a bandwidth equal to the RF bandwidth
	- Generates strong carrier signal for mixing with mixer

The First Mixer

 \bullet translates signals ω RF to IF frequency signal Depending on the frequency of the LO Phase information of signal preserved by the mixer Due to linear translation of frequency **IF frequencies from 45 to 82 MHz are common** for mobile radio receivers in the 800 MHz band.

The IF Filter

Rejects spurious signals generated by the mixer

The IF amplifier

- provides adequate gain to the IF signal
	- \triangleright To drive the next stage
	- Can provide high gain and is well-stabilized
- ◆IF frequencies from 45 to 82 MHz are common
	- \triangleright for mobile radio receivers in the 800 MHz band.
- **The Second mixer, LO and second IF Filter**
	- Mirror the function of the first IF strip
	- Narrows in and select the desired channel fro the entire passband

- **The Second mixer, LO and second IF Filter**
	- Provides additional selectivity for the receiver
	- ◆455 kHz is a fairly standard second IF frequency
	- Mobile phone receivers' IF frequency
		- Typically 10 MHz
- **In some architectures,**
	- Second IF stage is omitted.
	- Single down-conversion to a low IF
	- IF filter then performs channel selection

The Demodulator

- Extracts modulated signal from IF signal
- Converts the modulated signal to baseband
	- AM or FM (Analog system)
	- Multi-amplitude symbols or multiphase levels symbol
		- o Decoded to recover original signal.
- **The Baseband amplifier**
	- provides output power to drive output device Typicall speaker, fax or video screen

The Super Heterodyne Receiver-Digital System

Fig. 2 The Superheterodyne receiver

The Super Heterodyne Receiver-Digital System

- **T**WO parallel output stages
	- In-phase (*I* signal)
	- Quadrature-Phase (*Q* signal)
- Allows both amplitude and phase information to be preserved.
- Requires two mixers
	- ◆ One driven by an LO signal of the form $cos\omega_L$ _Ot
	- $\cdot \cdot \cdot$ The other $\sin \omega_I \, dt$
- $\Box I$ and Q channels \rightarrow 1 and 0 of binary signal.

A/D converter Elecomm.

OF For flat top sampling

- a sample-and-hold circuit is used
- *together with the chopper
- ◆This holds the amplitude of each pulse at constant level during sampling time **SAMPLE**

Fig. 3: Flat-top Sampling

Analog Transceiver System **Example Analog** Transceiver System

A block diagram of an analog mobile phone handsets

The Communication Channel

Hartley-Shannon Theorem

Relates Channel Capacity to Channel Bandwidth, *B* and Signal-to-Noise Ratio, *S*/*N*

$$
C = B \log_2 \left(1 + \frac{S}{N} \right)
$$
 bits/sec
de-off relation
in bandwidth and *S/N* ratio
is CDMA

It is a trade-off relation

Between bandwidth and *S/N* ratio

GSM vs CDMA

Receiver Noise

Sources of Noise

- *****The channel, through to the antenna
- \cdot The RF preselector filter:
	- Thermal noise contribution
- *****The active devices:
	- **Exercise** France
	- Shot noise
	- Flicker noise (1/*f* noise)

Receiver Noise…
 Receiver Noise…

Thermal Noise Power

$$
P_N = kTB
$$

- *k* k is Boltzmann's constant,
- \bullet *T* is temperature,

◆*B* is the bandwidth over which measurement is made.

$$
P_N = kTB
$$

constant,
th over which measurement is made.

$$
P_N = (1.38 \times 10^{-23} J/K)(293K)(1H_Z)
$$

$$
= 4.057 \times 10^{-21} W
$$

$$
= -174 dBm
$$

Receiver Noise…
 Receiver Noise…

Receiver Noise…
 Receiver Noise…

Noise Factor of cascaded system

Total Noise Factor

$$
F_{\text{tot}} = F_1 + (F_2 - 1)/G_1 + (F_3 - 1)/G_1 G_2 + \cdots + (F_n - 1)/G_1 G_2 \cdots G_{n-1}
$$

Receiver Sensitivity

Noise floor of the receiver prior to detection determines

- How strong the input signal must to be correctly interpreted as
	- ≥ 0 or 1 in a digital system or
	- High-quality analog waveform in analog system
- **L**Receiver Sensitivity is
	- Minimum input signal strength to produce quality output signal in the receiver.

Receiver Sensitivity

- Noise floor of the receiver referred to the
	- input, called
	- Minimum detectable signal is used as measure of
		- sensitivity
	- Signal to noise ratio of 10 dB considered minimum for audiofiles S_0/N of 10 dB is used to measure sensitivity
		- Or a SINAD (Signal in Noise and Distortion) of 10 dB
	- BER (Bit Error Rate) is another measure of sensiti-vity in digital systems: BER of 1% specified

System Nonlinearity

 \Box A component is nonlinear when

- Its output amplitude is not linearly proportional to its input amplitude or
- Its output phase is not linearly proportional to its input phase.
- **L**Gross nonlinearity
	- Results from cut-off and saturation effects
		- Occurs as device exceeds the limits of its normal active region

gain compression, intermodulation distortion

System Nonlinearity

In most active devices,

- nonlinearity is due to
	- Amplitude induced change in device transconductance
- collector or drain current modelled as a nonlinear

function of the input voltage, *vin*.

$$
I_{o} = I_{Q} + g_{m}v_{IN} + g_{m2}v_{IN}^{2} + g_{m3}v_{IN}^{3} + \cdots
$$

leads to 3 rd order intermodulation products

Harmonic powers increase nonlinearly with input

System Nonlinearity Experimenting System.

Third-order distortion and gain compression

Other measure of nonlinearity includes

Adjacent Channel Power Ratio (ACPR)

System Nonlinearity Experimenting System.

The Receiver Dynamic Range

Difference between the minimum detectable signal and the maximum signal

SFDR is Spurious-free dynamic range

System Nonlinearity

- Automatic Gain Control (AGC)
	- Gain of a system automatically controlled such that:
		- Decrease gain when strong signal cause overload
			- or distortion
	- Thus increasing the useful range of a receiver
- **Trade of is sometimes required**
	- Example: AGC verses noise performance of LNA
	- Attenuation in front of LNA
		- Reduces gain but
		- Worsens noise figure of LNA

System Nonlinearity Experimentille System.

Automatic Gain Control (AGC)

OGain reduced to minimize distortion

Output stage gain ideally reduced first

>This prevents noise figure of system rising

AGC is then introduced progressively ahead of them

System Nonlinearity Experiment System

ODual Loop AGC System

Selectivity

- Refers to the ability of a filter to reject signal outside its pass-band.
- *Defined by the attenuation of a signal at some frequencies offset from its center frequency.
- For channel selection filters in radio receivers,
	- Selectivities of 60 dB to 80 dB are typical
- Selectivity of radio receiver measured in terms of
	- Relative strength of adjacent signal compared to desired signal.
		- \blacktriangleright Eg. 60 dBc to 80 dBc.

Spurious responses

◆ Outputs that arise from unwanted frequency

components

Demodulating a channel whose carrier is at 895 MHz

A signal at 890 MHz can create a response in the receiver that interferes wit h the channel at 895 MHz.

 \triangleright The 890 MHz signal is thus a spurious signal

Spurious response can reduce the selectivity of a receiver.

Spurious responses

- ◆Although the amplitudes of spurious signals cannot be quantitatively determined, their frequencies can be known.
- •• Looking at the mixer as a source of spurious responses
	- E_f is desired signal frequency to which receiver is tuned
	- ϵ ^f_s is unwanted spurious frequency
	- \triangleright In the mixer, sum and difference frequencies will produce with the mixer's L O frequency, *f o*

Spurious responses

- $\oint_{\mathcal{F}}$ For sum mixer: $f_o + f_T = f_{IF}$
- \bullet For difference mixer (high side LO): $f_o f_T = f_{IF}$
- \bullet For difference mixer (Low side LO): $f_o f_T = -f_{IF}$

At multiple harmonics, spurious response could also map to IF $\mathbf{\hat{S}}$ For sum mixer: $nf_{O} + mf_{S} = f_{IF}$ \oint For difference mixer (high side LO): $nf_o - mf_s = f_{IF}$ \oint For difference mixer (Low side LO): $nf_o - nf_s = -f_{IF}$

Normalizing by *f IF* and defining

$$
T = f_T / f_{IF}
$$

$$
O = f_o / f_{IF}
$$

$$
S = f_s / f_{IF}
$$

Eliminating *O* from both sets of equations

 \bigstar For sum mixer: $n(1-T) + mS = 1$

 $\cdot \cdot \cdot$ For difference mixer (high side LO): $n(T+1) - mS = \pm 1$

 $\cdot \cdot \cdot$ For difference mixer (Low side LO): $n(T-1) - mS = \pm 1$

Spurious response Chart **Examplement** Engineering

Difference Mixer

If f_{IF} is 45 MHz $\mathrm{And} f_T$ is 135 MHz Then f_{O} is 180 MHz *T*=135/45=3

Spurious response will be caused by a spurious signal at the same frequency as the tuned signal *S*=3 generated by (2,3) mixing produ cts Consider f_T between 90 and 180 MHz

CDMA Receiver Handset

Air-Interface specification for PCS CDMA Mobile Handset

TABLE 3.1 SOME PARAMETERS FROM THE IS-95/98 AIR-INTERFACE SPECIFICATIONS FOR THE PCS **CDMA MOBILE HANDSET**

CDMA Receiver Handset

*Core components in the receiver chain

