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Resonant circuits are used in many applications such as 

Filters

Oscillators

Tuners

tuned amplifiers

and microwave communication networks.
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Near resonance, 

RF and microwave resonant circuits 

can be represented either as 

a lumped element series or 

parallel RLC networks. 
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Series Resonant Circuit
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

 Nea resonance, 

(6.5)
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

As R decreases, Q increases

(quality factor)Q

Quality Factor, Q of  the series resonator is
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 Parallel Resonant Circuit
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
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If the AC voltage across the parallel resonant circuit is V, 

then the complex power delivered to the resonator is

At resonance 

power dissipated in the resistor is

,
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In the resonant circuits seen so far,

the resistor R1 represents the loss in the resonator. 

It includes the losses in 

the capacitor as well as 

the inductor. 

The Q-factor is 

the ratio of the energy stored in the inductor and capacitor to 

the power dissipated in the resistor as a function of frequency
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For the series resonant circuit,

the unloaded Q-factor is defined by:

The unloaded Q-factor of the parallel resonant circuit is simply 

the inverse of the unloaded Q factor of the series resonant circuit.
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We can clearly see that  

as the resistance increases in the series resonant circuit, 

the Q-factor decreases. 

Conversely,

 as the resistance increases in the parallel resonant circuit, 

the Q-factor increases. 

The Q-factor is a measure of loss in  the resonant circuit. Thus

a higher Q corresponds  to  lower loss and 

a lower Q  corresponds to  a higher loss.
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For the parallel resonator that is attached to a 50Ω source and 

load as shown below

Loaded Q and External Q (QL and Qe )
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The three Q-factors are related by the inverse relationship of 

equation

The loaded Q is also related to the fractional bandwidth as

BW is the -3dB bandwidth, 

fl and fh are the lower and upper frequencies in Hz at -3dB points. 
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

Design a lumped element parallel resonator  at  a  frequency  

of 100 MHz. The resonator is intended to operate between a 

source resistance of 100 Ω and a load resistance of 400 Ω. use 

the ADS inductor and capacitor models that include the comp

onent Q factor (L=6.37 nH, Q =150; C=398 pF, Q=400). 

Example
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

The loaded Q can be calculated from
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In RF circuits and systems 

the impedances encountered are often quite low, 

ranging from 1 Ω to 50 Ω. 

It may not be practical to have a source impedance of 100 Ω and a 

load impedance of 400 Ω. 

Lower resistances such as 50 Ω will

Lower the bandwidth and thus

Lower the loaded Q

Effect of  Load Resistance on BW and QL
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To maintain the high Q of the resonator when attached to a 

load such as 50 Ω, 

it is necessary to transform the low impedance to high impedance 

presented to the load. 

The 50 Ω impedance can be transformed to the higher impedance 

of the  parallel  resonator  thereby  

resulting in less loading of the resonator impedance. 

This is referred to as loosely coupling the resonator to the load.

Effect of  Load Resistance on BW and QL
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The tapped-capacitor and tapped-inductor networks 

can be used to accomplish this Q transformation in lumped element 

circuits. 

Replacing the capacitor in the parallel network with a tapped  

capacitor,

RL1 is the higher transformed load resistance (required for the high Q)

RL is the desired termination impedance, say 50 Ω

CT is simply the original capacitance and C1 and C2 results from tapping
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A tapped inductor can also be used to the same effect at the   

source
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At higher RF and microwave frequencies 

small values of inductance and capacitance are physically unrealizable.

So resonators are seldom realized with discrete lumped element RLC 

components. 

Even if the values could be physically realized the resulting Q factors  

would be unacceptably low for most applications.
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At higher RF and microwave frequencies 

Resonators can be realized in all of the basic transmission line forms

There are many specialized resonators such as 

ceramic dielectric resonator pucks that are coupled to a microstrip transmission 

line as well as 

Yittrium Iron Garnet spheres that are loop coupled to its load.

These resonators are optimized for very high Q factors

 and may be tunable over a range of frequencies. 
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In the parallel LC Example, change the load from 400 Ω to 50 Ω and 

re-examine the circuit’s 3 dB bandwidth and QL .

Rearrange the parallel LC network with the tapped capacitor network  

and Re-examine the circuit’s 3 dB bandwidth and QL.

Do same for the inductor and re-examine the circuit’s 3 dB bandwidt

h and QL.

Home Work


