

TE 364 LECTURE 6

Filter Circuits

2018.02.25

Abdul-Rahman Ahmed

Outline

□Basic Filters and Terminology

Low-pass, High-pass, band-pass and band-stop

Passive Filters Synthesis

Image Parameter Method

Insertion Loss Method

Microwave Filters

Introduction

A Filter

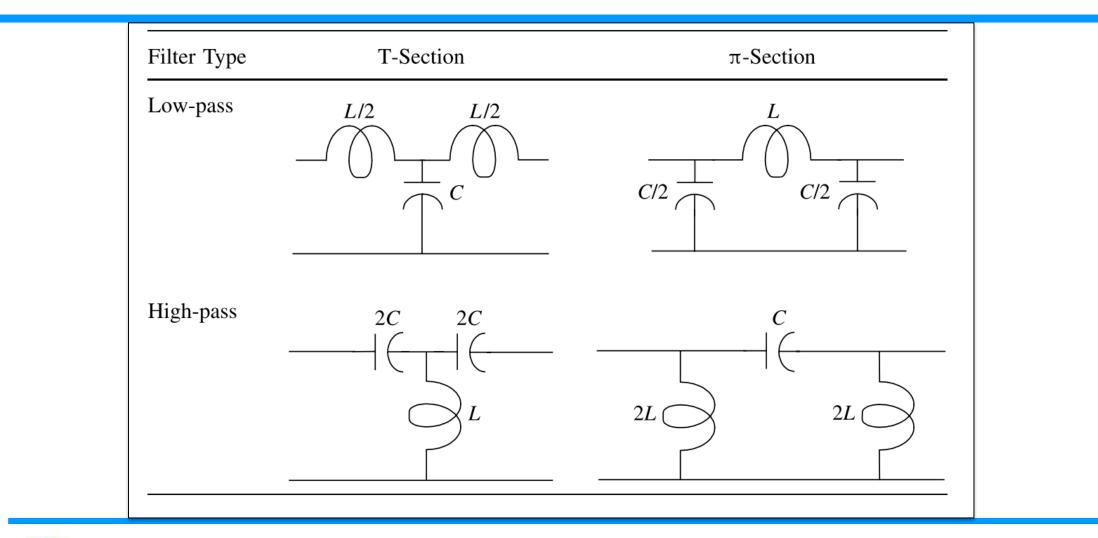
- ✤is a two-port network
- sused to control the frequency response at a certain point in an RF or microwave system
- by providing transmission at frequencies within the passband of the filter and
- Attenuation in the stopband of the filter.

Basic Filter Types

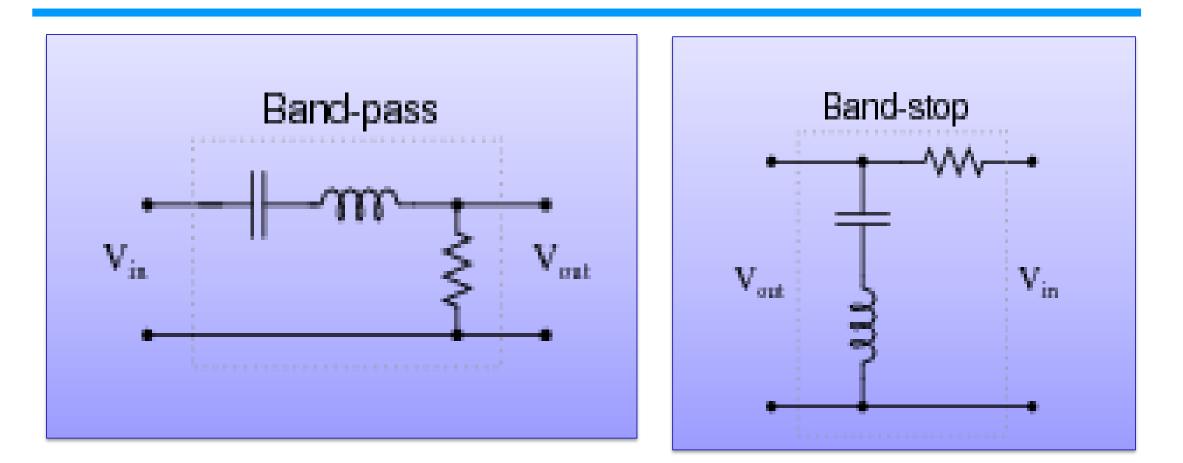
Typical frequency responses include:

- Iow-pass,
- high-pass,
- bandpass, and
- band-reject characteristics.

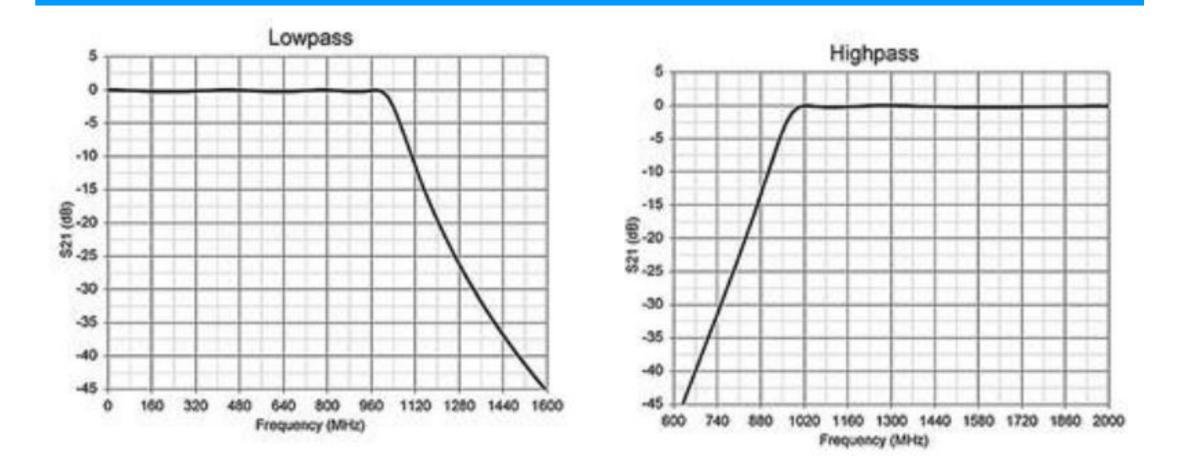
Basic Filter Types



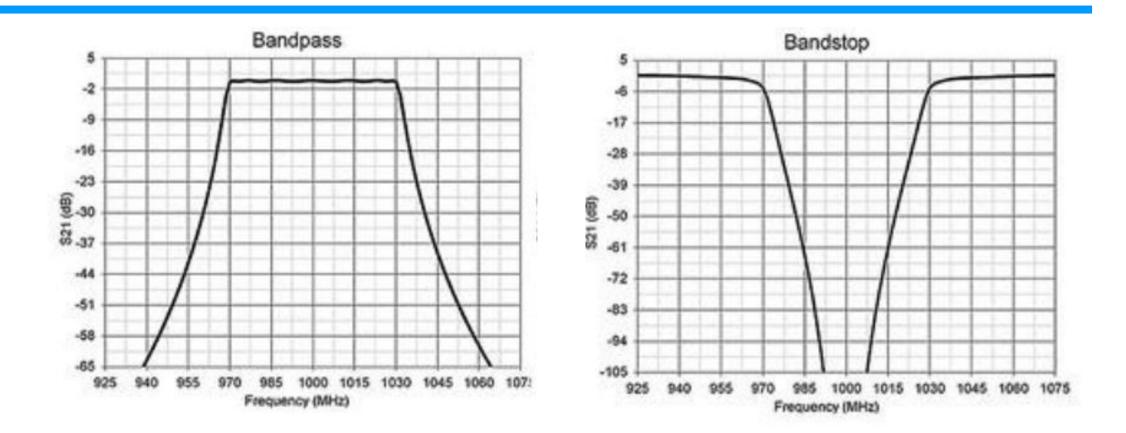
Basic Filter Types



Filter Frequency Response



Filter Frequency Response



Important Terminologies

□Insertion Loss (in dB)

The ratio of the power delivered by a source to a load with and without a two-port network inserted in between.

Return Loss (in dB)

The fraction of the input power that is lost due to reflection at its in put port

Attenuation (in dB or Nepers)

The ratio of the power delivered to a matched load to that supplied to it by a matched source

Filter Classification

Active filters

can amplify the signal besides blocking the undesired frequenciesPassive filters

 \bullet are economical and easy to design.

perform fairly well at higher frequencies

Filter Design Methods

Image parameter method

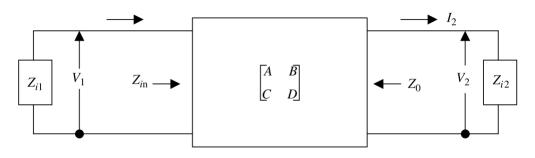
provides a design that can pass or stop a certain frequency band buttis frequency response cannot be shaped.

Insertion-loss method

Is more powerful in the sense that

*it provides a specified response of the filter.

Consider the two-port network



♦ Z_{i1} and Z_{i2} are the image impedance of the network $V_1 = AV_2 + BI_2$ $I_1 = CV_2 + DI_2$ $Z_{in} = \frac{V_1}{I_1} = \frac{AV_2 + BI_2}{CV_2 + DI_2} = \frac{AZ_{i2} + B}{CZ_{i2} + D}$

It can be shown that

$$V_2 = DV_1 - BI_1$$
$$I_2 = -CV_1 + AI_1$$

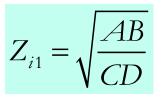
$$Z_{o} = -\frac{V_{2}}{I_{2}} = -\frac{DV_{1} - BI_{1}}{-CV_{1} + AI_{1}} = \frac{DZ_{i1} + B}{CZ_{i1} + A}$$

Note that

$$Z_{i1} = -\frac{V_1}{I_1}$$

□It can further be shown that;

 $For Z_{i1} = Z_{in} \text{ and } Z_{i2} = Z_o$



*and

$$Z_{i2} = \sqrt{\frac{BD}{AC}}$$

□Furthermore;

*The transfer characteristics is given by

$$\frac{V_1}{V_2} = A + B \frac{I_2}{V_2} = A + \frac{B}{Z_{i2}}$$

*or

$$\frac{V_1}{V_2} = \sqrt{\frac{A}{D}} \left(\sqrt{AD} + \sqrt{BC} \right)$$

• Or

$$\frac{V_2}{V_1} = \sqrt{\frac{D}{A}} \left(\sqrt{AD} - \sqrt{BC}\right)$$

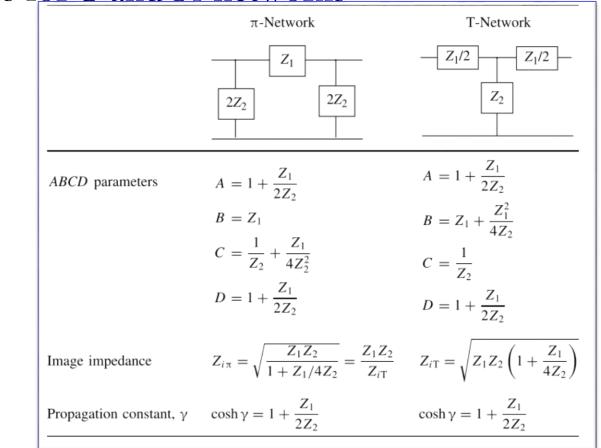
\bullet Note that, AD - BC = 1 for reciprocal networks

Similarly

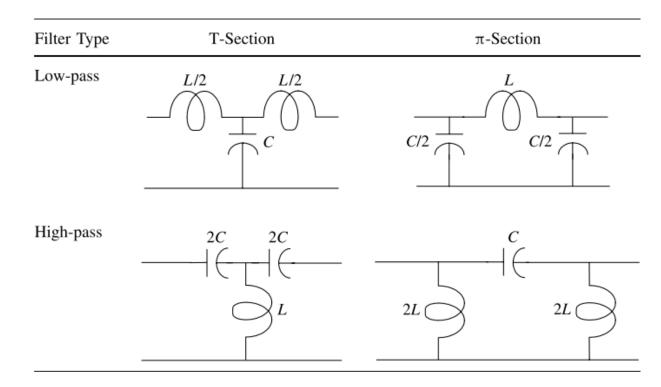
$$\frac{I_2}{I_1} = \sqrt{\frac{A}{D}} \left(\sqrt{AD} - \sqrt{BC}\right) \qquad A/D \text{ is X'former ratio} \\ \text{taken as 1 in this case}$$

And $e^{-\gamma} = \sqrt{AD} - \sqrt{BC}$ or $\cosh \gamma = \sqrt{AD}$

Parameters for T and Pi-networks



Constant *k*-filter sections



Generation For the low-pass T-section,

$$Z_1 = j\omega L \qquad Z_2 = \frac{1}{j\omega C}$$

*Therefore, the image impedance from Table is

$$Z_{iT} = \sqrt{\frac{L}{C} \left(1 - \frac{\omega^2 LC}{4}\right)}$$

✤In the case of D.C.

$$Z_{iT} = \sqrt{\frac{L}{C}} \quad (Nominal Impedance)$$

• For Z_{iT} to be equal to 0, (*Cut-off frequency,* ω_c)

$$\frac{\omega^2 LC}{4} = 1 \implies \omega_c = \frac{2}{\sqrt{LC}}$$

• •

□For the high-pass T-section,

$$Z_1 = \frac{1}{j\omega C} \qquad Z_2 = j\omega L$$

Therefore, the image impedance from Table is

$$Z_{iT} = \sqrt{\frac{L}{C} \left(1 - \frac{1}{4\omega^2 LC} \right)}$$

The cut-off frequency is

$$\omega_{c} = \frac{1}{2\sqrt{LC}}$$

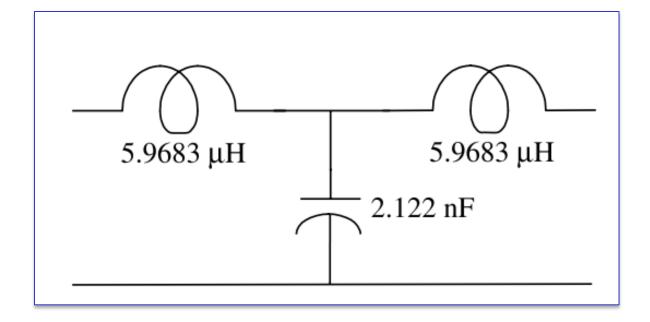
* Example

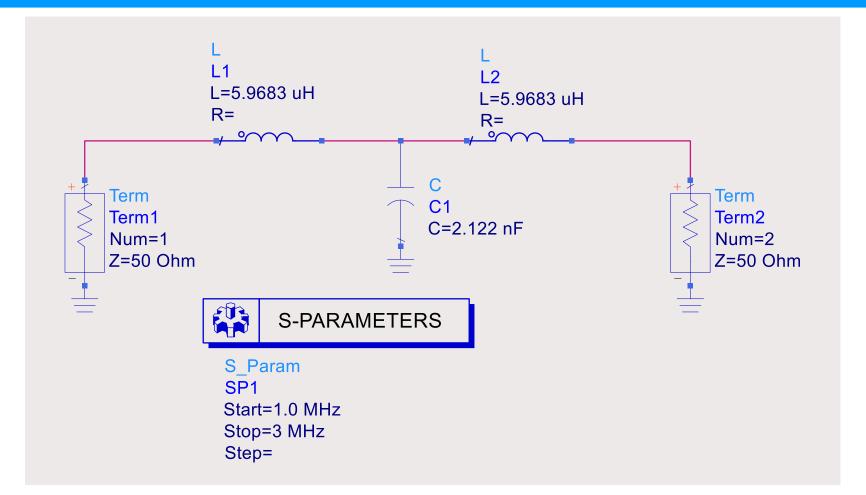
Example Design a low-pass constant-k T-section that has a nominal impedance of 75 Ω and a cut-off frequency of 2 MHz.

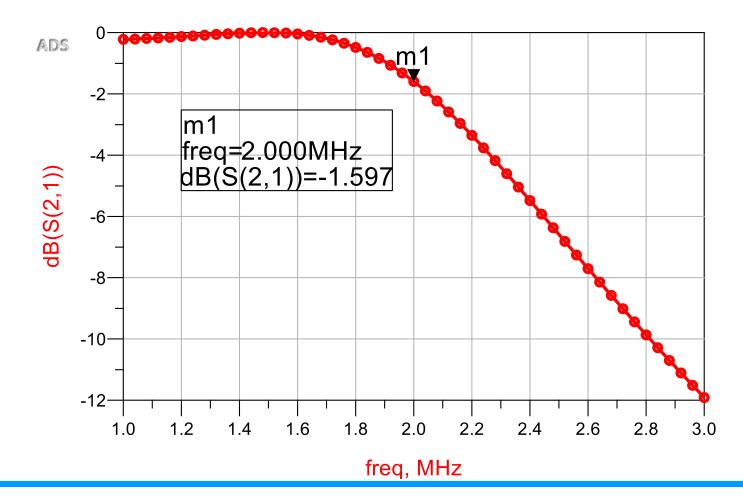
* Solution

$$Z_{iT} = 75\Omega = \sqrt{\frac{L}{C}}$$
, $\omega_c = 2 \times 2\pi \times 10^6 = \frac{2}{\sqrt{LC}}$

 $L = 11.9366 \,\mu\text{H}$ and $C = 2.122 \,n\text{F}$







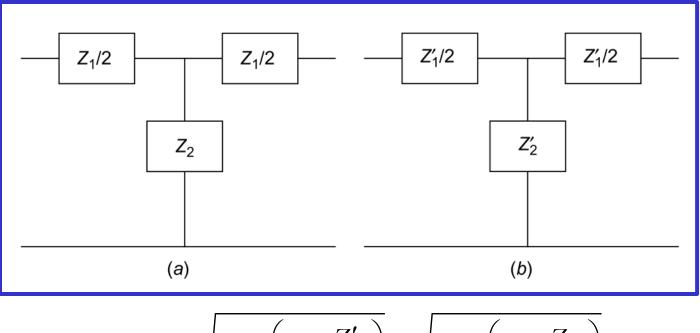
Disadvantage of Image Parameter

- The signal attenuation rate after the cut-off point is not very sharp,
- The image impedance is not constant with frequency.
- From a design point of view, it is important that it is constant, at least in its pass-band.

Solution:

M-derived Filter Section

Consider the following two T-sections



$$Z_{iT} = Z'_{iT} = \sqrt{Z'_{1}Z'_{2} \left(1 + \frac{Z'_{1}}{4Z'_{2}}\right)} = \sqrt{Z_{1}Z_{2} \left(1 + \frac{Z_{1}}{4Z_{2}}\right)}$$

$$Z_{2}' = \frac{1}{Z_{1}'} \left(Z_{1}Z_{2} + \frac{Z_{1}^{2} - Z_{1}'^{2}}{4} \right)$$

Let
$$Z'_1 = mZ_1$$

$$Z_2' = \frac{Z_2}{m} + \frac{1 - m^2}{4m} Z_1'$$

- Thus, an *m*-derived section is designed from the values of components determined for the corresponding constant-*k* filter.
- The value of *m* is selected to sharpen the attenuation at cut-off
- or to control the image impedance characteristics in the pass-band.

Generation For the low-pass T-section,

Therefore, the transfer function is

$$\frac{Z_1'}{Z_2'} = -\frac{\omega^2 m^2 LC}{1 - \left[\left(1 - m^2 \right) / 4 \right] \omega^2 LC} = \frac{4\omega^2 m^2 / \omega_c^2}{1 - \left(1 - m^2 \right) \omega^2 / \omega_c^2}$$

$$\omega_{c} = \frac{2}{\sqrt{LC}}$$

From the table of parameters on slide 17,

$$\cosh \gamma = 1 + \frac{Z_1'}{2Z_2'} = 1 - \frac{2\left(\frac{m\omega}{\omega_c}\right)^2}{1 - \left(1 - \frac{m^2}{\omega_c}\right)\left(\frac{\omega}{\omega_c}\right)^2}$$

$$\cosh \gamma = \frac{\omega_c^2 - \omega^2 - (m\omega)^2}{\omega_c^2 - (1 - m^2)\omega^2}$$

$$\Box \cosh \gamma \to \infty \quad \text{if} \quad$$

$$\omega = \frac{\omega_c}{\sqrt{1 - m^2}} = \omega_{\infty}$$

Condition used to sharpen *attenuation cut-off*

 $\bigstar \text{Small } m \text{ means } \omega \cong \omega_{\infty}$

 \bigstar ω_{∞} selected slightly higher than ω_{α}

m is then determined from the above condition

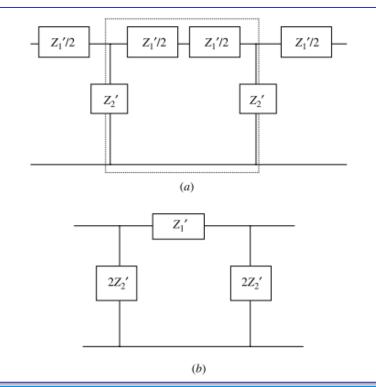
* Z'_1 and Z'_2 can then be determined from equations on slide 21

□ Note: image impedance of *m*-derived T-section \bullet is same as that of corresponding constant-*k* network In the case of Pi-network \bullet It is a function of *m* A characteristics used to design input and output network of the filter so that: Image impedance of composite network stays constant in its pass band

□ Note: an infinite cascade of T-networks

Can be considered as Pi-network after splitting shunt

arm.



DNote: of th $Z'_2\Gamma$ -network is replaced by

Also two halves of the series arms give

 Z'_1

 $2Z'_{2}$

□From the table of parameters on slide 13,

$$Z_{i\pi} = \frac{Z_1' Z_2'}{Z_{iT}} = \frac{Z_1 Z_2 + \left[\left(1 - m^2 \right) / 4 \right] Z_1^2}{Z_{iT}}$$

For the low-pass constant k-filter

$$Z_1 Z_2 = \frac{L}{C} = Z_o^2 \qquad \qquad Z_1^2 = -\omega^2 L = -\left(\frac{2Z_o\omega}{\omega_c}\right)^2$$

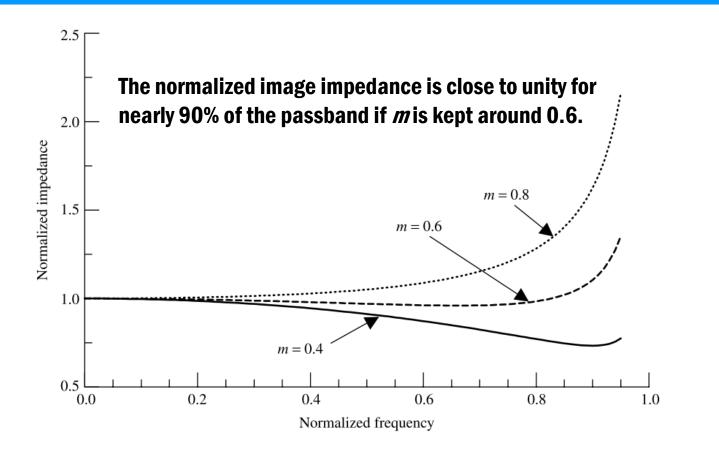
and,

$$Z_{i\mathrm{T}} = Z_0 \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$$

Therefore,

$$Z_{i\pi} = \frac{1 - (1 - m^2) (\omega/\omega_c)^2}{\sqrt{1 - (\omega/\omega_c)^2}} Z_0$$

or
$$\overline{Z}_{i\pi} = \frac{1 - (1 - m^2)\overline{\omega}^2}{\sqrt{1 - \overline{\omega}^2}}$$
 $\overline{Z}_{i\pi} = Z_{i\pi} / Z_o$
 $\overline{\omega} = \omega / \omega_c$



Normalized image impedance of π -network versus normalized frequency for three values of *m*.

*Example

► Design an *m*-derived T-section low pass filter with a cut -off frequency of 2 MHz and a nominal impedance of 75 Ω . The infinity frequency f_{∞} is 2.05 MHz.

* Solution

$$Z_{iT} = 75\Omega = \sqrt{\frac{L}{C}} \qquad \omega_c = 2 \times \pi \times 10^6 = \frac{2}{\sqrt{LC}}$$
$$L = 11.9366 \,\mu\text{H and} \quad C = 2.122 \,n\text{F}$$
$$\omega = \frac{\omega_c}{\sqrt{1 - m^2}} = \omega_\infty \Longrightarrow 1 - m^2 = \left(\frac{f_c}{f_\infty}\right)^2$$

$$m = \sqrt{1 - \left(\frac{f_c}{f_{\infty}}\right)^2} = \sqrt{1 - \left(\frac{2}{2.05}\right)^2} = 0.2195$$

$$mL/2 = 0.2195 \times 5.9683 = 1.31 \ \mu H$$

$$mC = 0.2195 \times 2.122 = 465.78 \text{ nF}$$

$$\frac{1 - m^2}{4m} L = 12.94 \ \mu H$$

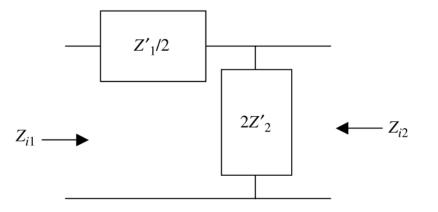
 \Box *m*-derived filter provides sharp attenuation at cut-off

- but attenuation in its stop-band is unacceptably low
- constant-*k* filter shows a higher attenuation in its stop-band,
 *but the change is unacceptably gradual
 Composite Filters: cascading these two filters
 *Taking advantage of each.

Since image impedance stays the same in two cases,

this cascading will not create a new impedance matching problem.
However image impedance varies with frequency at the input and output ports of the network.
Input and output matching therefore required

Consider the bisected pi-section below



$$A = 1 + \frac{Z'_1}{4Z'_2}$$
 $B = \frac{Z'_1}{2}$ $C = \frac{1}{2Z'_2}$ $D = 1$

The image impedances are:

$$Z_{i1} = \sqrt{Z_1' Z_2' + \frac{Z_1'^2}{4}} = Z_{iT}$$

$$Z_{i2} = \sqrt{\frac{Z_1' Z_2'}{1 + Z_1' / 4 Z_2'}} = \frac{Z_1' Z_2'}{Z_{iT}} = Z_{i\pi}$$

the bisected π -section can be connected at the input and output ports of cascaded constant-k and *m*-deri-ved sections to obtain a composite filter that

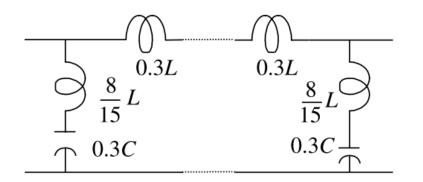
TABLE 9.3 Design Relations for Composite Filters	
Low-Pass	High-Pass
Constant-k T-filter	Constant-k T-filter
$Z_0 = \sqrt{L/C}$ $\omega_c = 2/\sqrt{LC}$ $L/2 \qquad L/2 \qquad L = 2Z_0/\omega_c$ $C = 2/Z_0\omega_c$	$Z_0 = \sqrt{L/C}$ $\omega_c = 1/2\sqrt{LC}$ $L = 0.5Z_0/\omega_c$ $C = 0.5/Z_0\omega_c$
m-derived T-Section	m-derived T-Section
(Values of L and C are the same as above)	(Values of L and C are the same as above)
$m = \sqrt{1 - \left(\frac{f_c}{f_{\infty}}\right)^2}$	$m = \sqrt{1 - \left(\frac{f_{\infty}}{f_c}\right)^2}$
$\begin{array}{ccc} mL/2 & mL/2 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\$	$2C/m \qquad 2C/m$ $\downarrow \qquad \qquad$

Low-Pass

High Pass

Input and Output Matching Sections

Input and Output Matching Sections



 $\begin{array}{c}
\hline C/0.3 \\
\hline L/0.3 \\
\hline \frac{15}{8}C \\
\hline \frac{15}{8}C \\
\hline \end{array}$

*Example

Example Design a high-pass composite filter with a nominal impedance of 75 Ω . It must pass all signals over 2 MHz. Assume that $f_{\infty} = 1.95$ MHz.

*Solution

From Table 9.3 (slide 31), we find the components of its constant-k section as follows.

$$L = \frac{75}{2 \times 2 \times \pi \times 2 \times 10^{6}} \text{H} = 2.984 \,\mu\text{H}$$
$$C = \frac{1}{2 \times 2 \times \pi \times 2 \times 10^{6} \times 75} \text{F} = 530.5 \,\text{pF}$$

and

Composite Filters

Similarly, the component values for its m-derived filter section are determined as follows:

$$m = \sqrt{1 - \left(\frac{f_{\infty}}{f_c}\right)^2} = \sqrt{1 - \left(\frac{1.95}{2}\right)^2} = 0.222$$
$$\frac{2C}{m} = 4.775 \text{ nF}$$
$$\frac{L}{m} = 13.43 \,\mu\text{H}$$

$$\frac{4\,m}{1-m^2}C = 0.496\,\mathrm{nF}$$

Composite Filters

The component values for the bisected π -section to be used at its input and output ports are found as

